[1] |
Zhang Z, Nie L, Soon G, et al. The use of covariates and random effects in evaluating predictive biomarkers under a potential outcome framework. Annals of Applied Statistics, 2014, 8(4): 2336-2355.
|
[2] |
Shen J, He X. Inference for subgroup analysis with a structured logistic-normal mixture model. Journal of the American Statistical Association, 2015, 110(509): 303-312.
|
[3] |
Hastie T, Tibshirani R. Discriminant analysis by Gaussian mixtures. Journal of the Royal Statistical Society Series B, 1966, 58 (1): 155-176.
|
[4] |
Wei S, Kosorok M. Latent supervised learning. Journal of the American Statistical Association, 2013, 108(503): 957-970.
|
[5] |
Guo F J, Levina E, Michailidis G, et al. Pairwise variable selection for high-dimensional model-based clustering. Biometrics, 2010, 66(3): 793-804.
|
[6] |
Chi E C, Lange K. Splitting methods for convex clustering. Journal of Computational and Graphical Statistics, 2015, 24(4): 994-1013.
|
[7] |
Wang J, Li J, Li Y, et al. A model-based multithreshold method for subgroup identification. Statistics in Medicine, 2019, 38: 2605-2631.
|
[8] |
Li J, Yue M, Zhang, W. Subgroup identification via homogeneity pursuit for dense longitudinal/spatial data. Statistics in Medicine, 2019, 38: 3256-3271.
|
[9] |
Ma S, Huang J. A concave pairwise fusion approach to subgroup analysis. Journal of the American Statistical Association, 2017, 112(517): 410-423.
|
[10] |
Izenman A. Reduced-rank regression for the multivariate linear model. Journal of Multivariate Analysis, 1975, 5(2): 248-264.
|
[11] |
Reinsel G, Velu R. Multivariate Reduced-Rank Regression: Theory and Applications. New York: Springer, 1998.
|
[12] |
Yuan M, Ekici A, Lu Z, et al. Dimension reduction and coefficient estimation in multivariate linear regression. Journal of the Royal Statistical Society Series B, 2007, 69(3): 329-346.
|
[13] |
Chen L, Huang J Z. Sparse reduced-rank regression for simultaneous dimension reduction and variable selection. Journal of the American Statistical Association, 2012, 107: 1533-1545.
|
[14] |
Liu H, Wang L, Zhao T. Calibrated multivariate regression with application to neural semantic basis discovery. Journal of Machine Learning Research, 2015, 16: 1579-1606.
|
[15] |
Zheng Z, Bahadori M T, Liu Y, et al. Scalable interpretable multi-response regression via SEED. Journal of Machine Learning Research, 2019, 20: 1-34.
|
[16] |
Tibshirani R J. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B, 1996, 58(1): 267-288.
|
[17] |
Zhang C H. Nearly unbiased variable selection under minimax concave penalty. Annals of Statistics, 2010, 38(2): 894-942.
|
[18] |
Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 2011, 96(459): 1348-1360.
|
[19] |
Wang L, Chen G, Li H. Group SCAD regression analysis for microarray time course gene expression data. Bioinformatics, 2007, 23(12): 1486-1494.
|
[20] |
Tseng P. Convergence of a block coordinate descent method for nondifferentiable minimization. Journal of Optimization Theory and Applications,2001, 109: 475-494.
|
[1] |
Zhang Z, Nie L, Soon G, et al. The use of covariates and random effects in evaluating predictive biomarkers under a potential outcome framework. Annals of Applied Statistics, 2014, 8(4): 2336-2355.
|
[2] |
Shen J, He X. Inference for subgroup analysis with a structured logistic-normal mixture model. Journal of the American Statistical Association, 2015, 110(509): 303-312.
|
[3] |
Hastie T, Tibshirani R. Discriminant analysis by Gaussian mixtures. Journal of the Royal Statistical Society Series B, 1966, 58 (1): 155-176.
|
[4] |
Wei S, Kosorok M. Latent supervised learning. Journal of the American Statistical Association, 2013, 108(503): 957-970.
|
[5] |
Guo F J, Levina E, Michailidis G, et al. Pairwise variable selection for high-dimensional model-based clustering. Biometrics, 2010, 66(3): 793-804.
|
[6] |
Chi E C, Lange K. Splitting methods for convex clustering. Journal of Computational and Graphical Statistics, 2015, 24(4): 994-1013.
|
[7] |
Wang J, Li J, Li Y, et al. A model-based multithreshold method for subgroup identification. Statistics in Medicine, 2019, 38: 2605-2631.
|
[8] |
Li J, Yue M, Zhang, W. Subgroup identification via homogeneity pursuit for dense longitudinal/spatial data. Statistics in Medicine, 2019, 38: 3256-3271.
|
[9] |
Ma S, Huang J. A concave pairwise fusion approach to subgroup analysis. Journal of the American Statistical Association, 2017, 112(517): 410-423.
|
[10] |
Izenman A. Reduced-rank regression for the multivariate linear model. Journal of Multivariate Analysis, 1975, 5(2): 248-264.
|
[11] |
Reinsel G, Velu R. Multivariate Reduced-Rank Regression: Theory and Applications. New York: Springer, 1998.
|
[12] |
Yuan M, Ekici A, Lu Z, et al. Dimension reduction and coefficient estimation in multivariate linear regression. Journal of the Royal Statistical Society Series B, 2007, 69(3): 329-346.
|
[13] |
Chen L, Huang J Z. Sparse reduced-rank regression for simultaneous dimension reduction and variable selection. Journal of the American Statistical Association, 2012, 107: 1533-1545.
|
[14] |
Liu H, Wang L, Zhao T. Calibrated multivariate regression with application to neural semantic basis discovery. Journal of Machine Learning Research, 2015, 16: 1579-1606.
|
[15] |
Zheng Z, Bahadori M T, Liu Y, et al. Scalable interpretable multi-response regression via SEED. Journal of Machine Learning Research, 2019, 20: 1-34.
|
[16] |
Tibshirani R J. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B, 1996, 58(1): 267-288.
|
[17] |
Zhang C H. Nearly unbiased variable selection under minimax concave penalty. Annals of Statistics, 2010, 38(2): 894-942.
|
[18] |
Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 2011, 96(459): 1348-1360.
|
[19] |
Wang L, Chen G, Li H. Group SCAD regression analysis for microarray time course gene expression data. Bioinformatics, 2007, 23(12): 1486-1494.
|
[20] |
Tseng P. Convergence of a block coordinate descent method for nondifferentiable minimization. Journal of Optimization Theory and Applications,2001, 109: 475-494.
|