[1] |
Nielsen M A , Chuang I L. Quantum Computation and Quantum Information. Beijing: Tsinghua University Press, 2015.
|
[2] |
Bar-Gill N, Pham L M, Jarmola A, et al. Solid-state electronic spin coherence time approaching one second. Nature Communications, 2013, 4: Article number 1743.
|
[3] |
Neumann P, Beck J, Steiner M, et al. Single-shot readout of a single nuclear spin. Science, 2010, 329(5991): 542-544.
|
[4] |
Rong X, Geng J P, Wang Z X, et al. Implementation of dynamically corrected gates on a single electron spin in diamond. Phys. Rev. Lett., 2014, 112: 050503.
|
[5] |
Mamin H J, Kim M, Sherwood M H, et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science, 2013, 339(6119): 557-560.
|
[6] |
Said R S, Twamley J. Robust control of entanglement in a nitrogen-vacancy center coupled to a C13 nuclear spin in diamond. Physical Review A, 2009, 80(3): 032303.
|
[7] |
Dolde F, Jakobi I, Naydenov B, et al. Room-temperature entanglement between single defect spins in diamond. Nature Physics, 2013, 9(3): 139-143.
|
[8] |
Dolde F, Bergholm V, Wang Y, et al. High-fidelity spin entanglement using optimal control. Nature Communications, 2014, 5: Article number 3371.
|
[9] |
Sekiguchi Y, Niikura N, Kuroiwa R, et al. Optical holonomic single quantum gates with a geometric spin under a zero field. Nature Photonics, 2017, 11: 309-314.
|
[10] |
Humphreys P C, Kalb N, Morits J P J, et al. Deterministic delivery of remote entanglement on a quantum network. Nature, 2018, 558(7709): 268-273.
|
[11] |
Beterov I I, Khamzina N G, Tret’yakov B D, et al. Resonant dipole-dipole interaction of Rydberg atoms for realisation of quantum computations. Quantum Electronics, 2018, 48(5): 453-459.
|
[12] |
King B E. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett., 1995, 75(25): 4714-4717.
|
[13] |
Jaksch D, Cirac J I, Zoller P, et al. Fast quantum gates for neutral atoms. Phys. Rev. Lett., 2000, 85(10): 2208-2211.
|
[14] |
Lim J, Lee H G, Ahn J. Review of cold Rydberg atoms and their applications. Journal of the Korean Physical Society, 2013, 63(4): 867-876.
|
[15] |
Goldman M L, Sipahigil A, Doherty M W, et al. Phonon-induced population dynamics and intersystem crossing in nitrogen-vacancy centers. Phys. Rev. Lett., 2015, 114: 145502.
|
[16] |
Hettich C. Coherent optical dipole coupling of two individual molecules at nanometre separation. Konstanz, Germany: University of Konstanz, 2002.
|
[17] |
Varada G V, Agarwal G S. Two photon resonance induced by the dipole-dipole interaction. Physical Review A, 1992, 45(9): 6721-6729.
|
[18] |
Doherty M W, Manson N B, Delaney P, et al. The nitrogenvacancy colour centre in diamond. Physics Reports, 2013, 528(1): 1-45.
|
[19] |
Lee K W, Lee D, Ovartchaiyapong P, et al. Strain coupling of a mechanical resonator to a single quantum emitter in diamond. Phys. Rev. Applied, 2016, 6: 034005.
|
[20] |
Tamarat Ph, Gaebel T, Rabeau J R, et al. Stark shift control of single optical centers in diamond. Phys. Rev. Lett., 2006, 97: 083002.
|
[21] |
Xu Z J, Yin Z Q, Han Q K, et al. Quantum information processing with closely-spaced diamond color centers in strain and magnetic fields. Optical Materials Express, 2019, 9: 4654-4668.
|
[22] |
Schirhagl R, Chang K, Loretz M, et al. Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology. Annual Review of Physical Chemistry, 2014, 65(1): 83-105.
|
[23] |
Zablotskii V, Polyakova T, Dejneka A. Cells in the nonuniform magnetic world: How cells respond to high-gradient magnetic fields. BioEssays, 2018, 40(8): e1800017.
|
[24] |
Batalov A, Zierl C, Gaebel T, et al. Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations. Phys. Rev. Lett., 2008, 100(7): 077401.
|
[25] |
Bienfait A, Pla J J, Kubo Y, et al. Controlling spin relaxation with a cavity. Nature, 2016,531(7592): 74-77.
|
[26] |
Goy P, Raimond J M, Gross M, et al. Observation of cavity-enhanced single-atom spontaneous emission. Phys. Rev. Lett., 1983, 50(24): 1903-1906.
|
[27] |
Hoang T H C, Durán-Valdeiglesias E, Alonso-Ramos C, et al. Narrow-linewidth carbon nanotube emission in silicon hollow-core photonic crystal cavity. Optics Letters, 2017, 42(11): 2228-2231.
|
[28] |
Takiguchi M, Sumikura H, Birowosuto M D, et al. Enhanced and suppressed spontaneous emission from a buried heterostructure photonic crystal cavity. In: 2013 Conference on Lasers and Electro-Optics Pacific Rim. Washington DC: Optical Society of America, 2013.
|
[29] |
Heinzen D J, Childs J J, Thomas J E, et al. Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator. Phys. Rev. Lett., 1987, 58(13): 1320-1323.
|
[30] |
Yamamoto Y, Machida S, Horikoshi Y, et al. Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity. Optics Communications, 1991, 80: 337-342.
|
[31] |
Storteboom J, Dolan P, Castelletto S, et al. Lifetime investigation of single nitrogen vacancy centres in nanodiamonds. Optics Express, 2015, 23(9): 11327-11333.
|
[32] |
Scully M O, Suhail Zubairy M. Quantum Optics. Beijing: World Publishing, 2000.
|
[33] |
Wilmott C, Wild P. A construction of a generalized quantum SWAP gate. https://arxiv.org/abs/0811.1684v1.
|
[34] |
Toyli D M, Weis C D, Fuchs G D, et al. Chip-scale nanofabrication of single spins and spin arrays in diamond. Nano Letters, 2010, 10(8): 3168-3172.
|
[35] |
Tamura1 S, Koike1 G, Komatsubara1 A, et al. Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation. Applied Physics Express, 2014, 7(11): 115201.
|
[36] |
Scarabelli D, Trusheim M, Gaathon O, et al. Nanoscale engineering of closely-spaced electronic spins in diamond. Nano Letters, 2016, 16(8): 4982-4990.
|
[1] |
Nielsen M A , Chuang I L. Quantum Computation and Quantum Information. Beijing: Tsinghua University Press, 2015.
|
[2] |
Bar-Gill N, Pham L M, Jarmola A, et al. Solid-state electronic spin coherence time approaching one second. Nature Communications, 2013, 4: Article number 1743.
|
[3] |
Neumann P, Beck J, Steiner M, et al. Single-shot readout of a single nuclear spin. Science, 2010, 329(5991): 542-544.
|
[4] |
Rong X, Geng J P, Wang Z X, et al. Implementation of dynamically corrected gates on a single electron spin in diamond. Phys. Rev. Lett., 2014, 112: 050503.
|
[5] |
Mamin H J, Kim M, Sherwood M H, et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science, 2013, 339(6119): 557-560.
|
[6] |
Said R S, Twamley J. Robust control of entanglement in a nitrogen-vacancy center coupled to a C13 nuclear spin in diamond. Physical Review A, 2009, 80(3): 032303.
|
[7] |
Dolde F, Jakobi I, Naydenov B, et al. Room-temperature entanglement between single defect spins in diamond. Nature Physics, 2013, 9(3): 139-143.
|
[8] |
Dolde F, Bergholm V, Wang Y, et al. High-fidelity spin entanglement using optimal control. Nature Communications, 2014, 5: Article number 3371.
|
[9] |
Sekiguchi Y, Niikura N, Kuroiwa R, et al. Optical holonomic single quantum gates with a geometric spin under a zero field. Nature Photonics, 2017, 11: 309-314.
|
[10] |
Humphreys P C, Kalb N, Morits J P J, et al. Deterministic delivery of remote entanglement on a quantum network. Nature, 2018, 558(7709): 268-273.
|
[11] |
Beterov I I, Khamzina N G, Tret’yakov B D, et al. Resonant dipole-dipole interaction of Rydberg atoms for realisation of quantum computations. Quantum Electronics, 2018, 48(5): 453-459.
|
[12] |
King B E. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett., 1995, 75(25): 4714-4717.
|
[13] |
Jaksch D, Cirac J I, Zoller P, et al. Fast quantum gates for neutral atoms. Phys. Rev. Lett., 2000, 85(10): 2208-2211.
|
[14] |
Lim J, Lee H G, Ahn J. Review of cold Rydberg atoms and their applications. Journal of the Korean Physical Society, 2013, 63(4): 867-876.
|
[15] |
Goldman M L, Sipahigil A, Doherty M W, et al. Phonon-induced population dynamics and intersystem crossing in nitrogen-vacancy centers. Phys. Rev. Lett., 2015, 114: 145502.
|
[16] |
Hettich C. Coherent optical dipole coupling of two individual molecules at nanometre separation. Konstanz, Germany: University of Konstanz, 2002.
|
[17] |
Varada G V, Agarwal G S. Two photon resonance induced by the dipole-dipole interaction. Physical Review A, 1992, 45(9): 6721-6729.
|
[18] |
Doherty M W, Manson N B, Delaney P, et al. The nitrogenvacancy colour centre in diamond. Physics Reports, 2013, 528(1): 1-45.
|
[19] |
Lee K W, Lee D, Ovartchaiyapong P, et al. Strain coupling of a mechanical resonator to a single quantum emitter in diamond. Phys. Rev. Applied, 2016, 6: 034005.
|
[20] |
Tamarat Ph, Gaebel T, Rabeau J R, et al. Stark shift control of single optical centers in diamond. Phys. Rev. Lett., 2006, 97: 083002.
|
[21] |
Xu Z J, Yin Z Q, Han Q K, et al. Quantum information processing with closely-spaced diamond color centers in strain and magnetic fields. Optical Materials Express, 2019, 9: 4654-4668.
|
[22] |
Schirhagl R, Chang K, Loretz M, et al. Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology. Annual Review of Physical Chemistry, 2014, 65(1): 83-105.
|
[23] |
Zablotskii V, Polyakova T, Dejneka A. Cells in the nonuniform magnetic world: How cells respond to high-gradient magnetic fields. BioEssays, 2018, 40(8): e1800017.
|
[24] |
Batalov A, Zierl C, Gaebel T, et al. Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations. Phys. Rev. Lett., 2008, 100(7): 077401.
|
[25] |
Bienfait A, Pla J J, Kubo Y, et al. Controlling spin relaxation with a cavity. Nature, 2016,531(7592): 74-77.
|
[26] |
Goy P, Raimond J M, Gross M, et al. Observation of cavity-enhanced single-atom spontaneous emission. Phys. Rev. Lett., 1983, 50(24): 1903-1906.
|
[27] |
Hoang T H C, Durán-Valdeiglesias E, Alonso-Ramos C, et al. Narrow-linewidth carbon nanotube emission in silicon hollow-core photonic crystal cavity. Optics Letters, 2017, 42(11): 2228-2231.
|
[28] |
Takiguchi M, Sumikura H, Birowosuto M D, et al. Enhanced and suppressed spontaneous emission from a buried heterostructure photonic crystal cavity. In: 2013 Conference on Lasers and Electro-Optics Pacific Rim. Washington DC: Optical Society of America, 2013.
|
[29] |
Heinzen D J, Childs J J, Thomas J E, et al. Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator. Phys. Rev. Lett., 1987, 58(13): 1320-1323.
|
[30] |
Yamamoto Y, Machida S, Horikoshi Y, et al. Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity. Optics Communications, 1991, 80: 337-342.
|
[31] |
Storteboom J, Dolan P, Castelletto S, et al. Lifetime investigation of single nitrogen vacancy centres in nanodiamonds. Optics Express, 2015, 23(9): 11327-11333.
|
[32] |
Scully M O, Suhail Zubairy M. Quantum Optics. Beijing: World Publishing, 2000.
|
[33] |
Wilmott C, Wild P. A construction of a generalized quantum SWAP gate. https://arxiv.org/abs/0811.1684v1.
|
[34] |
Toyli D M, Weis C D, Fuchs G D, et al. Chip-scale nanofabrication of single spins and spin arrays in diamond. Nano Letters, 2010, 10(8): 3168-3172.
|
[35] |
Tamura1 S, Koike1 G, Komatsubara1 A, et al. Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation. Applied Physics Express, 2014, 7(11): 115201.
|
[36] |
Scarabelli D, Trusheim M, Gaathon O, et al. Nanoscale engineering of closely-spaced electronic spins in diamond. Nano Letters, 2016, 16(8): 4982-4990.
|