[1] |
YU G D, FAN Y Z.Spectral conditions for a graph to be Hamilton-connected[J].Applied Mechanics and Materials, 2013, 336-338: 2329-2334.
|
[2] |
HO T Y, LIN C K, TAN J J M, et al.On the extremal number of edges in Hamiltonian connected graphs[J].Applied Mechanics Letters, 2010, 23(1): 26-29.
|
[3] |
ZHOU Q N, WANG L G.Some sufficient spectral conditions on Hamilton-connected and traceable graphs[J].Linear Multilinear Algebra, 2017, 65(2): 224-234.
|
[4] |
CHEN M Z, ZHANG X D.The number of edges, spectral radius and Hamilton-connectedness of graphs[J].Journal of Combinatorial Optimization, 2018, 35: 1104-1127.
|
[5] |
BERGE C. Graphs and Hypergraphs[M]. Translated by MINIEKA E. Amsterdam: North-Holland, 1973.
|
[6] |
BONDY J A, MURTY U S R. Graph Theory[M]. New York: Springer, 2008.
|
[7] |
NIKIFOROV V. Some inequalities for the largest eigenvalue of a graph[J]. Combinatorics Probability and Computing, 2002, 11: 179-189.
|
[8] |
FENG L H, YU G H. On three conjectures involving the signless Laplacian spectral radius of graphs[J].Publications de l Institut Mathematique, 2009, 99: 35-38.)
|
[1] |
YU G D, FAN Y Z.Spectral conditions for a graph to be Hamilton-connected[J].Applied Mechanics and Materials, 2013, 336-338: 2329-2334.
|
[2] |
HO T Y, LIN C K, TAN J J M, et al.On the extremal number of edges in Hamiltonian connected graphs[J].Applied Mechanics Letters, 2010, 23(1): 26-29.
|
[3] |
ZHOU Q N, WANG L G.Some sufficient spectral conditions on Hamilton-connected and traceable graphs[J].Linear Multilinear Algebra, 2017, 65(2): 224-234.
|
[4] |
CHEN M Z, ZHANG X D.The number of edges, spectral radius and Hamilton-connectedness of graphs[J].Journal of Combinatorial Optimization, 2018, 35: 1104-1127.
|
[5] |
BERGE C. Graphs and Hypergraphs[M]. Translated by MINIEKA E. Amsterdam: North-Holland, 1973.
|
[6] |
BONDY J A, MURTY U S R. Graph Theory[M]. New York: Springer, 2008.
|
[7] |
NIKIFOROV V. Some inequalities for the largest eigenvalue of a graph[J]. Combinatorics Probability and Computing, 2002, 11: 179-189.
|
[8] |
FENG L H, YU G H. On three conjectures involving the signless Laplacian spectral radius of graphs[J].Publications de l Institut Mathematique, 2009, 99: 35-38.)
|