ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

Corrosion behavior of T91 steel in liquid lead-bismuth eutectic at 550 ℃ under different tensile stresses

Cite this:
https://doi.org/10.3969/j.issn.0253-2778.2018.05.006
  • Received Date: 19 December 2017
  • Accepted Date: 08 March 2018
  • Rev Recd Date: 08 March 2018
  • Publish Date: 31 May 2018
  • To efficiently evaluate the corrosion behavior of T91 steel in lead-bismuth eutectic (LBE) under different stresses, a corrosion experiment of small tapered conical specimen of T91 in LBE with an oxygen concentration of 1×10-6 wt% at 550 ℃ under 0~180 MPa was carried out. The results showed that the (Fe,Cr)3O4 and internal oxidation zone always exist, but the Fe3O4 peels off severely under tensile stress, and its fragments become smaller with the increase of stress; (Fe,Cr)3O4 has two sub-layers, which is caused by different Cr enrichments; As the tensile stress increases, the cracks increase in number and size, extending continuously to the matrix direction, running through the whole (Fe,Cr)3O4 by the time the tensile stress reaches 180 MPa. Moreover, with the tensile stress increasing, the thickness of each oxide layer increases, but the rate of incrassation decreases constantly.
    To efficiently evaluate the corrosion behavior of T91 steel in lead-bismuth eutectic (LBE) under different stresses, a corrosion experiment of small tapered conical specimen of T91 in LBE with an oxygen concentration of 1×10-6 wt% at 550 ℃ under 0~180 MPa was carried out. The results showed that the (Fe,Cr)3O4 and internal oxidation zone always exist, but the Fe3O4 peels off severely under tensile stress, and its fragments become smaller with the increase of stress; (Fe,Cr)3O4 has two sub-layers, which is caused by different Cr enrichments; As the tensile stress increases, the cracks increase in number and size, extending continuously to the matrix direction, running through the whole (Fe,Cr)3O4 by the time the tensile stress reaches 180 MPa. Moreover, with the tensile stress increasing, the thickness of each oxide layer increases, but the rate of incrassation decreases constantly.
  • loading
  • [1]
    SAR F, MHIAOUI S, GASSER J G. Thermal conductivity of liquid lead-bismuth alloys, possible coolants for fourth generation spallation nuclear reactors[J]. Journal of Non-Crystalline Solids, 2007, 353(32-40): 3622-3627.
    [2]
    ZHANG J S. Lead-bismuth eutectic (LBE): A coolant candidate for Gen.Ⅳ advanced nuclear reactor concepts[J]. Advanced Engineering Materials, 2014, 16(4): 349-356.
    [3]
    WU Y C, CHEN Z B, HU L Q, et al. Identification of safety gaps for fusion demonstration reactors[J]. Nature Energy, 2016, 1: 16154-161164.
    [4]
    WU Y C, JIANG J Q, WANG M H, et al. A fusion-driven subcritical system concept based on viable technologies[J]. Nuclear Fusion, 2011, 51(10): 103036-103042.
    [5]
    吴宜灿, 宋婧, 胡丽琴, 等. 超级蒙特卡罗核计算仿真软件系统SuperMC[J]. 核科学与工程, 2016, 36(1): 62-71.
    WU Yican, SONG Jing, HU Liqin, et al. Super Monte Carlo Simulation Program for nuclear and radiation process: Super MC[J]. Nuclear Science and Engineering, 2016, 36(1): 62-71.
    [6]
    吴宜灿. 中国ADS铅基反应堆设计与研发进展[J]. Engineering, 2016, 2(1): 134-141.
    WU Yican.Design and R&D progress of China lead-based reactor for ADS research facility[J]. Engineering, 2016, 2(1): 134-141.
    [7]
    ZHANG J S. A review of steel corrosion by liquid lead and lead-bismuth[J]. Corrosion Science, 2009, 51(6): 1207-1227.
    [8]
    田书建, 张建武. 316L和T91不锈钢在550 ℃静态铅铋合金中的腐蚀行为[J]. 中国科学技术大学学报, 2015, 45(9): 751-756.
    TIAN Shujian, ZHANG Jianwu. Corrosion behavior of 316L and T91 steels in stagnant lead-bismuth eutectic at 550 ℃[J]. Journal of University of Science and Technology of China, 2015, 45(9): 751-756.
    [9]
    LI H Q, BAI P W, LIN Z W, et al. Corrosion resistance in Pb-Bi alloy of 15-15Ti steel coated with Al2O3/SiC bilayer thin films by magnetron sputtering[J]. Fusion Engineering and Design, 2017, 125: 384-390.
    [10]
    SCHROER C, TSISAR V, WEDEMEYER O, et al. Corrosion in steel T91 caused by flowing lead-bismuth eutectic at 400 °C and 10-7 mass% solved oxygen[C]// Proceedings of the 24th International Conference on Nuclear Engineering, New York:ASME, 2016.
    [11]
    TIAN S J, JIANG Z Z, LUO L. Oxidation behavior of T91 steel in flowing oxygen-containing lead-bismuth eutectic at 500 °C[J]. Materials and Corrosion, 2016,67(12): 1274-1285.
    [12]
    钱余海,李美栓.力学载荷作用下合金的高温氧化行为研究状况[J].腐蚀科学与防护技术,2001, 13(6): 342-346.
    QIAN Yuhai, LI Meishuan. A review on high temperature oxidation of alloys under mechanical loading[J]. Corrosion Science and Protection Technology, 2001, 13(6): 342-346.
    [13]
    WEISENBURGER A, HEINZEL A, MLLER G, et al. T91 cladding tubes with and without modified FeCrAlY coatings exposed in LBE at different flow, stress and temperature conditions[J]. Journal of Nuclear Materials, 2008, 376(3): 274-281.
    [14]
    YAMAKI E, KIKUCHI K. A stability of oxide layers formed in LBE on HCM12A to external loading[J]. Journal of Nuclear Materials, 2010, 398(1-3): 153-159.
    [15]
    全国钢标准化技术委员会. GB/T 15970.1-1995 金属和合金的腐蚀应力腐蚀试验第1部分:试验方法总则[S]. 北京: 中国标准出版社, 1995.
    [16]
    徐敬尧. 先进核反应堆用铅铋合金性能及纯净化技术研究[D]. 合肥: 中国科学技术大学, 2013.
    [17]
    WU Y C, BAI Y Q, SONG Y, et al. Development strategy and conceptual design of China Lead-based Research Reactor[J]. Annals of Nuclear Energy, 2016, 87: 511-516.
    [18]
    王改英, 柏云清, 高胜, 等. 液态铅铋氧浓度测量技术初步研究[J]. 核科学与工程, 2012, 32(2): 165-169.
    WANG Gaiying, BAI Yunqing, GAO Sheng, et al. Preliminary study on the measurement technology of oxygen concentration in liquid lead bismuth[J]. Nuclear Science and Engineering, 2012, 32(2): 165-169.
    [19]
    张敏, 吴斌, 高胜, 等. 温度对静态铅铋中氧浓度变化的影响[J]. 核科学与工程, 2014, 34(4): 488-493.
    ZHANG Min, WU Bin, GAO Sheng, et al. Effect of temperature on oxygen concentration change in static lead-bismuth eutectic[J]. Nuclear Science and Engineering, 2014, 34(4): 488-493.
    [20]
    田书建, 姜志忠, 张敏, 等. T91钢在氧浓度为0.01 ppm静态铅铋合金中的界面腐蚀特征[J]. 原子能科学技术, 2017, 51(1): 158-164.
    TIAN Shujian, JIANG Zhizhong, ZHANG Min, et al. Interface corrosion characteristics of T91 steel in static lead-bismuth eutectic with 0.01 ppm oxygen[J]. Atomic Energy Science and Technology, 2017, 51(1): 158-164.
    [21]
    WEISENBURGER A, SCHROER C, JIANU A, et al. Long term corrosion on T91 and AISI1 316L steel in flowing lead alloy and corrosion protection barrier development: Experiments and models[J]. Journal of Nuclear Materials,2012, 415(3): 260-269.
    [22]
    SCHROER C, WEDEMEYER O, SKRYPNIK A, et al. Corrosion kinetics of Steel T91 in flowing oxygen-containing lead-bismuth eutectic at 450 °C[J]. Journal of Nuclear Materials, 2012, 431(1-3): 105-112.
    [23]
    MLLER G, SCHUMACHER G, ZIMMERMANN F. Investigation on oxygen controlled liquid lead corrosion of surface treated steels[J]. Journal of Nuclear Materials, 2000, 278(1): 85-95.
    [24]
    李美栓. 金属的高温腐蚀[M]. 北京: 冶金工业出版社, 2001: 201-210.
    [25]
    周长海, 马海涛, 王来. 外加应力下合金高温氧化膜的生长及其失效愈合研究现状[J]. 腐蚀科学与防护技术, 2010, 22(6): 558-562.
    ZHOU Changhai, MA Haitao, WANG Lai. A review on oxide-scale growth, failure and its healing behavior during high temperature oxidation of alloys[J]. Corrosion Science and Protection Technology, 2010, 22(6): 558-562.)
  • 加载中

Catalog

    [1]
    SAR F, MHIAOUI S, GASSER J G. Thermal conductivity of liquid lead-bismuth alloys, possible coolants for fourth generation spallation nuclear reactors[J]. Journal of Non-Crystalline Solids, 2007, 353(32-40): 3622-3627.
    [2]
    ZHANG J S. Lead-bismuth eutectic (LBE): A coolant candidate for Gen.Ⅳ advanced nuclear reactor concepts[J]. Advanced Engineering Materials, 2014, 16(4): 349-356.
    [3]
    WU Y C, CHEN Z B, HU L Q, et al. Identification of safety gaps for fusion demonstration reactors[J]. Nature Energy, 2016, 1: 16154-161164.
    [4]
    WU Y C, JIANG J Q, WANG M H, et al. A fusion-driven subcritical system concept based on viable technologies[J]. Nuclear Fusion, 2011, 51(10): 103036-103042.
    [5]
    吴宜灿, 宋婧, 胡丽琴, 等. 超级蒙特卡罗核计算仿真软件系统SuperMC[J]. 核科学与工程, 2016, 36(1): 62-71.
    WU Yican, SONG Jing, HU Liqin, et al. Super Monte Carlo Simulation Program for nuclear and radiation process: Super MC[J]. Nuclear Science and Engineering, 2016, 36(1): 62-71.
    [6]
    吴宜灿. 中国ADS铅基反应堆设计与研发进展[J]. Engineering, 2016, 2(1): 134-141.
    WU Yican.Design and R&D progress of China lead-based reactor for ADS research facility[J]. Engineering, 2016, 2(1): 134-141.
    [7]
    ZHANG J S. A review of steel corrosion by liquid lead and lead-bismuth[J]. Corrosion Science, 2009, 51(6): 1207-1227.
    [8]
    田书建, 张建武. 316L和T91不锈钢在550 ℃静态铅铋合金中的腐蚀行为[J]. 中国科学技术大学学报, 2015, 45(9): 751-756.
    TIAN Shujian, ZHANG Jianwu. Corrosion behavior of 316L and T91 steels in stagnant lead-bismuth eutectic at 550 ℃[J]. Journal of University of Science and Technology of China, 2015, 45(9): 751-756.
    [9]
    LI H Q, BAI P W, LIN Z W, et al. Corrosion resistance in Pb-Bi alloy of 15-15Ti steel coated with Al2O3/SiC bilayer thin films by magnetron sputtering[J]. Fusion Engineering and Design, 2017, 125: 384-390.
    [10]
    SCHROER C, TSISAR V, WEDEMEYER O, et al. Corrosion in steel T91 caused by flowing lead-bismuth eutectic at 400 °C and 10-7 mass% solved oxygen[C]// Proceedings of the 24th International Conference on Nuclear Engineering, New York:ASME, 2016.
    [11]
    TIAN S J, JIANG Z Z, LUO L. Oxidation behavior of T91 steel in flowing oxygen-containing lead-bismuth eutectic at 500 °C[J]. Materials and Corrosion, 2016,67(12): 1274-1285.
    [12]
    钱余海,李美栓.力学载荷作用下合金的高温氧化行为研究状况[J].腐蚀科学与防护技术,2001, 13(6): 342-346.
    QIAN Yuhai, LI Meishuan. A review on high temperature oxidation of alloys under mechanical loading[J]. Corrosion Science and Protection Technology, 2001, 13(6): 342-346.
    [13]
    WEISENBURGER A, HEINZEL A, MLLER G, et al. T91 cladding tubes with and without modified FeCrAlY coatings exposed in LBE at different flow, stress and temperature conditions[J]. Journal of Nuclear Materials, 2008, 376(3): 274-281.
    [14]
    YAMAKI E, KIKUCHI K. A stability of oxide layers formed in LBE on HCM12A to external loading[J]. Journal of Nuclear Materials, 2010, 398(1-3): 153-159.
    [15]
    全国钢标准化技术委员会. GB/T 15970.1-1995 金属和合金的腐蚀应力腐蚀试验第1部分:试验方法总则[S]. 北京: 中国标准出版社, 1995.
    [16]
    徐敬尧. 先进核反应堆用铅铋合金性能及纯净化技术研究[D]. 合肥: 中国科学技术大学, 2013.
    [17]
    WU Y C, BAI Y Q, SONG Y, et al. Development strategy and conceptual design of China Lead-based Research Reactor[J]. Annals of Nuclear Energy, 2016, 87: 511-516.
    [18]
    王改英, 柏云清, 高胜, 等. 液态铅铋氧浓度测量技术初步研究[J]. 核科学与工程, 2012, 32(2): 165-169.
    WANG Gaiying, BAI Yunqing, GAO Sheng, et al. Preliminary study on the measurement technology of oxygen concentration in liquid lead bismuth[J]. Nuclear Science and Engineering, 2012, 32(2): 165-169.
    [19]
    张敏, 吴斌, 高胜, 等. 温度对静态铅铋中氧浓度变化的影响[J]. 核科学与工程, 2014, 34(4): 488-493.
    ZHANG Min, WU Bin, GAO Sheng, et al. Effect of temperature on oxygen concentration change in static lead-bismuth eutectic[J]. Nuclear Science and Engineering, 2014, 34(4): 488-493.
    [20]
    田书建, 姜志忠, 张敏, 等. T91钢在氧浓度为0.01 ppm静态铅铋合金中的界面腐蚀特征[J]. 原子能科学技术, 2017, 51(1): 158-164.
    TIAN Shujian, JIANG Zhizhong, ZHANG Min, et al. Interface corrosion characteristics of T91 steel in static lead-bismuth eutectic with 0.01 ppm oxygen[J]. Atomic Energy Science and Technology, 2017, 51(1): 158-164.
    [21]
    WEISENBURGER A, SCHROER C, JIANU A, et al. Long term corrosion on T91 and AISI1 316L steel in flowing lead alloy and corrosion protection barrier development: Experiments and models[J]. Journal of Nuclear Materials,2012, 415(3): 260-269.
    [22]
    SCHROER C, WEDEMEYER O, SKRYPNIK A, et al. Corrosion kinetics of Steel T91 in flowing oxygen-containing lead-bismuth eutectic at 450 °C[J]. Journal of Nuclear Materials, 2012, 431(1-3): 105-112.
    [23]
    MLLER G, SCHUMACHER G, ZIMMERMANN F. Investigation on oxygen controlled liquid lead corrosion of surface treated steels[J]. Journal of Nuclear Materials, 2000, 278(1): 85-95.
    [24]
    李美栓. 金属的高温腐蚀[M]. 北京: 冶金工业出版社, 2001: 201-210.
    [25]
    周长海, 马海涛, 王来. 外加应力下合金高温氧化膜的生长及其失效愈合研究现状[J]. 腐蚀科学与防护技术, 2010, 22(6): 558-562.
    ZHOU Changhai, MA Haitao, WANG Lai. A review on oxide-scale growth, failure and its healing behavior during high temperature oxidation of alloys[J]. Corrosion Science and Protection Technology, 2010, 22(6): 558-562.)

    Article Metrics

    Article views (78) PDF downloads(132)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return