ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

Distribution and ecological risk assessment of 6 typical trace elements in mining soils in Huainan coalfield

Cite this:
https://doi.org/10.3969/j.issn.0253-2778.2017.05.006
  • Received Date: 15 August 2016
  • Rev Recd Date: 25 November 2016
  • Publish Date: 31 May 2017
  • Accumulation of coal gangue can release trace elements into the surroundings, causing severe soil pollution. To access the soil deterioration and environmental contamination by trace elements under the coal mining activities, soil and coal gangue samples were collected from 3 different mines (Xinzhuangzi, Panyi, Guqiao) in Huainan city, Anhui Province, China. Concentrations of trace elements (Cd, Cr, Cu, Ni, Pb and Zn) were determined using an inductively coupled plasma atomic emission spectrometry (ICP-AES). The results show that Cd is the only one element that exceeded the soil background of Huainan. There are no obvious characteristics for horizontal trace metal distributions. The oldest mine presented the worst contamination for the time effect (old mine> middle aged mine> new mine). The soil pollution assessment using individual pollution index suggests that Cd presents light pollution in Xinzhuangzi Mine, and minor pollution in Panyi and Guqiao Mine. The three mines all present moderate pollution risk evaluated using superimposed indices. Potential ecological risk index indicates that Cd element poses a considerable potential ecological risk, and the soil of the three mining areas has medium ecological risk.
    Accumulation of coal gangue can release trace elements into the surroundings, causing severe soil pollution. To access the soil deterioration and environmental contamination by trace elements under the coal mining activities, soil and coal gangue samples were collected from 3 different mines (Xinzhuangzi, Panyi, Guqiao) in Huainan city, Anhui Province, China. Concentrations of trace elements (Cd, Cr, Cu, Ni, Pb and Zn) were determined using an inductively coupled plasma atomic emission spectrometry (ICP-AES). The results show that Cd is the only one element that exceeded the soil background of Huainan. There are no obvious characteristics for horizontal trace metal distributions. The oldest mine presented the worst contamination for the time effect (old mine> middle aged mine> new mine). The soil pollution assessment using individual pollution index suggests that Cd presents light pollution in Xinzhuangzi Mine, and minor pollution in Panyi and Guqiao Mine. The three mines all present moderate pollution risk evaluated using superimposed indices. Potential ecological risk index indicates that Cd element poses a considerable potential ecological risk, and the soil of the three mining areas has medium ecological risk.
  • loading
  • [1]
    中华人民共和国国家统计局. 各地区矿山环境保护情况(2008年)[EB/OL]. [2016-07-15]. http://www.stats.gov.cn/ztjc/ztsj/hjtjzl/2008/201006/t20100613_70527.html .
    [2]
    中华人民共和国国家统计局. 各地区矿山环境保护情况(2010年)[EB/OL]. [2016-07-15].http://www.stats.gov.cn/ztjc/ztsj/hjtjzl/2010/201112/t20111227_72473.html .
    [3]
    卢岚岚, 刘桂建, 王兴明, 等. 淮南顾桥矿土壤环境中微量元素的分布及其生态风险评价[J]. 中国科学技术大学学报, 2014, 44(2): 119-127.
    [4]
    PANDEY B, AGRAWAL M, SINGH S. Ecological risk assessment of soil contamination by trace elements around coal mining area[J]. Journal of Soils and Sediments, 2016, 16(1): 159-168.
    [5]
    REZA S K, BARUAH U, SINGH S K, et al. Geostatistical and multivariate analysis of soil heavy metal contamination near coal mining area, Northeastern India[J]. Environmental Earth Sciences, 2015, 73(9): 5425-5433.
    [6]
    DANG Z, LIU C J, HAIGH M J. Mobility of heavy metals associated with the natural weathering of coal mine spoils[J]. Environmental Pollution, 2002, 118(3): 419-426.
    [7]
    郑刘根, 丁帅帅, 刘丛丛, 等. 不同类型煤矸石中环境敏感性微量元素淋滤特性[J]. 中南大学学报(自然科学版), 2016, 57(2):703-710.
    [8]
    淮南市统计局. 淮南市2015年国民经济和社会发展统计公报[EB/OL]. [2016-07-15].http://tjj.huainan.gov.cn/15642284/18956927.html .
    [9]
    淮南市统计局. 2015年淮南统计年鉴[EB/OL]. (2016-05-22)[2016-07-15].http://tjj.huainan.gov.cn/15642315/19614315.html .
    [10]
    淮南文明网. 淮南市煤场和散状物料堆场整治工作进入攻坚阶段[EB/OL].(2015-05-28
    )[2016-07-15]. http://ahhn.wenming.cn/cscj/201505/t20150528_1750771.htm .
    [11]
    李保杰,顾和和,纪亚洲. 矿区土地复垦景观格局变化和生态效应[J]. 农业工程学报,2012,28(3):251-256.
    [12]
    王兴明,董众兵,刘桂建,等. Zn,Pb,Cd,Cu 在淮南新庄孜煤矿矸石山附近土壤和作物中分布特征[J]. 中国科学技术大学学报,2012,42(1) :17-25.
    [13]
    MOOR C, LYMBEROPOULOU T, DIETRICH V J. Determination of heavy metals in soils, sediments and geological materials by ICP-AES and ICP-MS[J]. Microchimica Acta, 2001, 136(3):123-128.
    [14]
    孙勇, 杨刚, 张金平, 等. ICP-AES 法测定玉米秸秆中的微量元素含量[J]. 光谱学与光谱分析, 2007, 27(2): 371-373.
    [15]
    李顺江, 杨林生, 王五一,等. ICP-AES法测定西藏大骨节病区及非病区饮用水中的微量元素[J]. 光谱学与光谱分析, 2007, 27(3):585-588.
    [16]
    HKANSON L. An ecological risk index for aquatic pollution control: A sedimentological approach[J]. Water Research, 1980, 14:975-1001.
    [17]
    崔龙鹏, 白建峰, 史永红,等. 采矿活动对煤矿区土壤中重金属污染研究[J]. 土壤学报, 2004, 41(6):896-904.
    [18]
    DANG Z, LIU C, HAIGH M J. Mobility of heavy metals associated with the natural weathering of coal mine spoils[J]. Environmental Pollution, 2002, 118(3): 419-426.
    [19]
    宋文, 何天容, 潘鲁生. 贵州水城煤矸石风化土壤-农作物系统中汞分布规律研究[J]. 农业环境科学学报(自然科学版), 2010, 29(7):1326-1332.
    [20]
    李东艳, 方元元, 任玉芬, 等. 煤矸石堆周围土壤重金属污染特征分析——以焦作市中马村矿为例[J]. 煤田地质与勘探, 2004, 32(5): 15-17.
    [21]
    张明亮, 王海霞. 煤矿区矸石山周边土壤重金属污染特征与规律[J]. 水土保持学报, 2007, 21(4):189-192.
    [22]
    姚峰, 包安明, 古丽·加帕尔, 等. 新疆准东煤田土壤重金属来源与污染评价[J]. 中国环境科学, 2013,33 (10): 1821-1828.
    [23]
    刘巍, 杨建军, 汪君, 等. 准东煤田露天矿区土壤重金属污染现状评价及来源分析[J]. 环境科学, 2016, 37(5): 1938-1945.
    [24]
    NIU S, GAO L, ZHAO J. Distribution and risk assessment of heavy metals in the Xinzhuangzi reclamation soil from the Huainan coal mining area, China[J]. Human and Ecological Risk Assessment: An International Journal, 2015, 21(4): 900-912.
    [25]
    NIU S, GAO L, ZHAO J. Risk Analysis of metals in soil from a restored coal mining area[J]. Bulletin of environmental contamination and toxicology, 2015, 95(2): 183-187.
    [26]
    HALIM M A, MAJUMDER R K, ZAMAN M N. Paddy soil heavy metal contamination and uptake in rice plants from the adjacent area of Barapukuria coal mine, northwest Bangladesh[J]. Arabian Journal of Geosciences, 2015, 8(6): 3391-3401.
    [27]
    LIU G, TAO L, LIU X, et al. Heavy metal speciation and pollution of agricultural soils along Jishui River in non-ferrous metal mine area in Jiangxi Province, China[J]. Journal of Geochemical Exploration, 2013, 132: 156-163.
    [28]
    徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2): 112-115.
    [29]
    赵沁娜, 徐启新, 杨凯. 潜在生态危害指数法在典型污染行业土壤污染评价中的应用[J]. 华东师范大学学报: 自然科学版, 2005, 1: 111-116.
    [30]
    ZHANG J, DENG H, WANG D, et al. Toxic heavy metal contamination and risk assessment of street dust in small towns of Shanghai suburban area, China[J]. Environmental Science and Pollution Research, 2013, 20(1): 323-332.
    [31]
    LI Z, MA Z, VAN DER KUIJP T J, et al. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468: 843-853.
  • 加载中

Catalog

    [1]
    中华人民共和国国家统计局. 各地区矿山环境保护情况(2008年)[EB/OL]. [2016-07-15]. http://www.stats.gov.cn/ztjc/ztsj/hjtjzl/2008/201006/t20100613_70527.html .
    [2]
    中华人民共和国国家统计局. 各地区矿山环境保护情况(2010年)[EB/OL]. [2016-07-15].http://www.stats.gov.cn/ztjc/ztsj/hjtjzl/2010/201112/t20111227_72473.html .
    [3]
    卢岚岚, 刘桂建, 王兴明, 等. 淮南顾桥矿土壤环境中微量元素的分布及其生态风险评价[J]. 中国科学技术大学学报, 2014, 44(2): 119-127.
    [4]
    PANDEY B, AGRAWAL M, SINGH S. Ecological risk assessment of soil contamination by trace elements around coal mining area[J]. Journal of Soils and Sediments, 2016, 16(1): 159-168.
    [5]
    REZA S K, BARUAH U, SINGH S K, et al. Geostatistical and multivariate analysis of soil heavy metal contamination near coal mining area, Northeastern India[J]. Environmental Earth Sciences, 2015, 73(9): 5425-5433.
    [6]
    DANG Z, LIU C J, HAIGH M J. Mobility of heavy metals associated with the natural weathering of coal mine spoils[J]. Environmental Pollution, 2002, 118(3): 419-426.
    [7]
    郑刘根, 丁帅帅, 刘丛丛, 等. 不同类型煤矸石中环境敏感性微量元素淋滤特性[J]. 中南大学学报(自然科学版), 2016, 57(2):703-710.
    [8]
    淮南市统计局. 淮南市2015年国民经济和社会发展统计公报[EB/OL]. [2016-07-15].http://tjj.huainan.gov.cn/15642284/18956927.html .
    [9]
    淮南市统计局. 2015年淮南统计年鉴[EB/OL]. (2016-05-22)[2016-07-15].http://tjj.huainan.gov.cn/15642315/19614315.html .
    [10]
    淮南文明网. 淮南市煤场和散状物料堆场整治工作进入攻坚阶段[EB/OL].(2015-05-28
    )[2016-07-15]. http://ahhn.wenming.cn/cscj/201505/t20150528_1750771.htm .
    [11]
    李保杰,顾和和,纪亚洲. 矿区土地复垦景观格局变化和生态效应[J]. 农业工程学报,2012,28(3):251-256.
    [12]
    王兴明,董众兵,刘桂建,等. Zn,Pb,Cd,Cu 在淮南新庄孜煤矿矸石山附近土壤和作物中分布特征[J]. 中国科学技术大学学报,2012,42(1) :17-25.
    [13]
    MOOR C, LYMBEROPOULOU T, DIETRICH V J. Determination of heavy metals in soils, sediments and geological materials by ICP-AES and ICP-MS[J]. Microchimica Acta, 2001, 136(3):123-128.
    [14]
    孙勇, 杨刚, 张金平, 等. ICP-AES 法测定玉米秸秆中的微量元素含量[J]. 光谱学与光谱分析, 2007, 27(2): 371-373.
    [15]
    李顺江, 杨林生, 王五一,等. ICP-AES法测定西藏大骨节病区及非病区饮用水中的微量元素[J]. 光谱学与光谱分析, 2007, 27(3):585-588.
    [16]
    HKANSON L. An ecological risk index for aquatic pollution control: A sedimentological approach[J]. Water Research, 1980, 14:975-1001.
    [17]
    崔龙鹏, 白建峰, 史永红,等. 采矿活动对煤矿区土壤中重金属污染研究[J]. 土壤学报, 2004, 41(6):896-904.
    [18]
    DANG Z, LIU C, HAIGH M J. Mobility of heavy metals associated with the natural weathering of coal mine spoils[J]. Environmental Pollution, 2002, 118(3): 419-426.
    [19]
    宋文, 何天容, 潘鲁生. 贵州水城煤矸石风化土壤-农作物系统中汞分布规律研究[J]. 农业环境科学学报(自然科学版), 2010, 29(7):1326-1332.
    [20]
    李东艳, 方元元, 任玉芬, 等. 煤矸石堆周围土壤重金属污染特征分析——以焦作市中马村矿为例[J]. 煤田地质与勘探, 2004, 32(5): 15-17.
    [21]
    张明亮, 王海霞. 煤矿区矸石山周边土壤重金属污染特征与规律[J]. 水土保持学报, 2007, 21(4):189-192.
    [22]
    姚峰, 包安明, 古丽·加帕尔, 等. 新疆准东煤田土壤重金属来源与污染评价[J]. 中国环境科学, 2013,33 (10): 1821-1828.
    [23]
    刘巍, 杨建军, 汪君, 等. 准东煤田露天矿区土壤重金属污染现状评价及来源分析[J]. 环境科学, 2016, 37(5): 1938-1945.
    [24]
    NIU S, GAO L, ZHAO J. Distribution and risk assessment of heavy metals in the Xinzhuangzi reclamation soil from the Huainan coal mining area, China[J]. Human and Ecological Risk Assessment: An International Journal, 2015, 21(4): 900-912.
    [25]
    NIU S, GAO L, ZHAO J. Risk Analysis of metals in soil from a restored coal mining area[J]. Bulletin of environmental contamination and toxicology, 2015, 95(2): 183-187.
    [26]
    HALIM M A, MAJUMDER R K, ZAMAN M N. Paddy soil heavy metal contamination and uptake in rice plants from the adjacent area of Barapukuria coal mine, northwest Bangladesh[J]. Arabian Journal of Geosciences, 2015, 8(6): 3391-3401.
    [27]
    LIU G, TAO L, LIU X, et al. Heavy metal speciation and pollution of agricultural soils along Jishui River in non-ferrous metal mine area in Jiangxi Province, China[J]. Journal of Geochemical Exploration, 2013, 132: 156-163.
    [28]
    徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2): 112-115.
    [29]
    赵沁娜, 徐启新, 杨凯. 潜在生态危害指数法在典型污染行业土壤污染评价中的应用[J]. 华东师范大学学报: 自然科学版, 2005, 1: 111-116.
    [30]
    ZHANG J, DENG H, WANG D, et al. Toxic heavy metal contamination and risk assessment of street dust in small towns of Shanghai suburban area, China[J]. Environmental Science and Pollution Research, 2013, 20(1): 323-332.
    [31]
    LI Z, MA Z, VAN DER KUIJP T J, et al. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468: 843-853.

    Article Metrics

    Article views (424) PDF downloads(191)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return