ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

Characteristics of lightning activity and its relationship with the atmospheric environment parameters in Southeast China

Cite this:
https://doi.org/10.3969/j.issn.0253-2778.2017.05.005
  • Received Date: 12 April 2016
  • Rev Recd Date: 29 April 2016
  • Publish Date: 31 May 2017
  • Based on space-borne lightning observation data from Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD), and reanalysis data of National Center for Environmental Protection/National Center for Atmospheric Research (NCEP/NCAR) and ERA-Interim in an 18-year period from 1997 to 2013, the lightning activity over southeastern China (17.5~30°N, 100~122.5°E) and its associations with atmospheric environmental factors were investigated. The results indicate that the lightning activities show strong seasonal variabilities with high frequency of lightning events in the spring and summer. On the inter-annual time scale, the El Nio-Southern Oscillation (ENSO ) has a significant impact on lightning variability. The El Nio events can significantly intensify the lightning activity in winter and spring. The high frequency of lightning events in southeastern China is associated with the increase of thermodynamic parameters, such as surface air temperature, 700~400 hPa averaged relative humidity and 850 hPa potential temperature. The atmospheric stability parameters are also closely related to lightning activity, and a larger unstable atmospheric layer is associated with a stronger lightning activity. Furthermore, multivariate step linear regression is applied to establish the relationship between predictor variables (e.g., surface air temperature, convective available potential energy, Bowen ratio, lifted index and Showalter index) and prediction (averaged lightning activity concentration). The multiple stepwise linear regression equation is beneficial for regional lightning activity forecast.
    Based on space-borne lightning observation data from Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD), and reanalysis data of National Center for Environmental Protection/National Center for Atmospheric Research (NCEP/NCAR) and ERA-Interim in an 18-year period from 1997 to 2013, the lightning activity over southeastern China (17.5~30°N, 100~122.5°E) and its associations with atmospheric environmental factors were investigated. The results indicate that the lightning activities show strong seasonal variabilities with high frequency of lightning events in the spring and summer. On the inter-annual time scale, the El Nio-Southern Oscillation (ENSO ) has a significant impact on lightning variability. The El Nio events can significantly intensify the lightning activity in winter and spring. The high frequency of lightning events in southeastern China is associated with the increase of thermodynamic parameters, such as surface air temperature, 700~400 hPa averaged relative humidity and 850 hPa potential temperature. The atmospheric stability parameters are also closely related to lightning activity, and a larger unstable atmospheric layer is associated with a stronger lightning activity. Furthermore, multivariate step linear regression is applied to establish the relationship between predictor variables (e.g., surface air temperature, convective available potential energy, Bowen ratio, lifted index and Showalter index) and prediction (averaged lightning activity concentration). The multiple stepwise linear regression equation is beneficial for regional lightning activity forecast.
  • loading
  • [1]
    MARKSON R, MUIR M. Solar wind control of the Earth's electric field[J]. Science, 1980, 208(4447): 979-990.
    [2]
    WILLIAMS E R, HECKMAN S J. The local diurnal variation of cloud electrification and the global diurnal variation of negative charge on the Earth[J]. Journal of Geophysical Research: Atmospheres, 1993, 98(D3): 5221-5234.
    [3]
    PRICE C. Evidence for a link between global lightning activity and upper tropospheric water vapour[J]. Nature, 2000, 406(6793): 290-293.
    [4]
    BOND D W, STEIGER S, ZHANG R, et al. The importance of NOx production by lightning in the tropics[J]. Atmospheric Environment, 2002, 36(9): 1509-1519.
    [5]
    周筠珺, 郄秀书. 闪电产生NOx机制及中国内陆闪电产生NOx量的估算[J]. 高原气象, 2002, 21(5): 501-508.
    [6]
    郄秀书. 卫星观测到的全球闪电活动及其地域差异[J]. 地球物理学报, 2003, 46(6): 743-750.
    [7]
    郄秀书, TOUMI R, 周筠珺. 青藏高原中部地区闪电活动特征及其对对流最大不稳定能量的响应[J]. 科学通报, 2003, 48(1): 87-90.
    [8]
    郭凤霞, 鞠晓雨, 陈聪. 估算闪电产生氮氧化物量的研究回顾与进展[J]. 地球科学进展, 2013, 28(3): 305-317.
    [9]
    李照荣, 康凤琴, 马胜萍. 西北地区雷暴气候特征分析[J]. 灾害学, 2005, 20(2): 83-88.
    [10]
    冯建英, 陈佩璇, 梁东升. 西北地区雷暴的气候特征及其变化规律[J]. 甘肃科学学报, 2007, 19(3): 71-74.
    [11]
    易燕明, 杨兆礼, 万齐林, 等. 近50年广东省雷暴、闪电时空变化特征的研究[J]. 热带气象学报, 2006, 22(6): 539-546.
    [12]
    冯桂力, 胡先锋, 李采莲, 等. 青岛地区闪电活动气候特征[J]. 陕西气象, 2009 (B09): 1-4.
    [13]
    孙蟩. 北京城区与郊区雷暴气候特征及其变化对比分析[J]. 气候与环境研究, 2011, 16(5): 649-656.
    [14]
    邓德文, 周筠珺, 赵鹏国, 等. 中国典型区域雷电活动气候特征及其机制分析[J]. 气象科学, 2013 (1): 109-118.
    [15]
    郄秀书. 青藏高原闪电活动的时空分布特征[J]. 地球物理学报, 2004, 47(6): 997-1002.
    [16]
    马明, 陶善昌, 祝宝友, 等. 卫星观测的中国及周边地区闪电密度的气候分布[J]. 中国科学(D辑:地球科学), 2004, 34(4): 298-306.
    [17]
    袁铁, 郄秀书. 卫星观测到的我国闪电活动的时空分布特征[J]. 高原气象, 2004, 23(4): 488-494.
    [18]
    TOUMI R, QIE X. Seasonal variation of lightning on the Tibetan Plateau: A spring anomaly?[J]. Geophysical Research Letters, 2004, 31(4): 235-250.
    [19]
    马明, 陶善昌, 祝宝友, 等. 全球闪电活动对气温变化的响应[J]. 科学通报, 2005, 50(15): 1643-1647.
    [20]
    张义军, 孟青. 青藏高原东部地区的大气电特征[J] . 高原气象, 1998, 17( 2) : 135- 141.
    [21]
    袁铁, 郄秀书. 青藏高原中部闪电活动与相关气象要素季节变化的相关分析[J]. 气象学报, 2005, 63(1): 123-127.
    [22]
    郑栋, 张义军, 吕伟涛, 等. 大气不稳定度参数与闪电活动的预报[J]. 高原气象, 2005, 24(2): 196-203.
    [23]
    CHRISTIAN H, BLAKESLEE R, GOODMAN S, et al. The lightning imaging sensor[C]//NASA Conference Publication. NASA, 1999: 746-749.
    [24]
    BOCCIPPIO D J, KOSHAK W J, BLAKESLEE R J. Performance assessment of the optical transient detector and lightning imaging sensor. Part I: Predicted diurnal variability[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(9): 1318-1332.
    [25]
    CHRISTIAN H J, BLAKESLEE R J, BOCCIPPIO D J, et al. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D1): ACL 4-1-ACL 4-15.
    [26]
    CECIL D J, BUECHLER D E, BLAKESLEE R J. Gridded lightning climatology from TRMM-LIS and OTD: Dataset description[J]. Atmospheric Research, 2014, 135: 404-414.
    [27]
    KALNAY E, KANAMITSU M, KISTLER R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437-471.
    [28]
    DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656): 553-597.
    [29]
    BOLTON D. The computation of equivalent potential temperature[J]. Monthly Weather Review, 1980, 108(7): 1046-1053.
    [30]
    李任承, 顾光芹. 关于假相当位温的精确计算[J]. 气象, 1990, 16(3): 13-17.
    [31]
    DUGAS W A, FRITSCHEN L J, GAY L W, et al. Bowen ratio, eddy correlation, and portable chamber measurements of sensible and latent heat flux over irrigated spring wheat[J]. Agricultural and Forest Meteorology, 1991, 56(1): 1-20.
    [32]
    WARE R, ROCKEN C, SOLHEIM F, et al. GPS sounding of the atmosphere from low Earth orbit: Preliminary results[J]. Bulletin of the American Meteorological Society, 1996, 77(1): 19-40.
    [33]
    GEORGE J J. Weather forecasting for aeronautics[M]. New York: Academic Press, 2014.
    [34]
    ANDERSSON T, ANDERSSON M, JACOBSSON C, et al. Thermodynamic indices for forecasting thunderstorms in southern Sweden[J]. Meteorological Magazine, 1989, 118(1404): 141-146.
    [35]
    GOODMAN S J. Predicting thunderstorm evolution using ground-based lightning detection networks[R]. NASA, 1990: 19910006347.
    [36]
    BARLOW W. A new index for the prediction of deep convection[C]//17th Conference On Severe Local Storms. St. Louis, MO: American Meteorological Society, 1993: 129-132.
    [37]
    VAN DELDEN A. The synoptic setting of thunderstorms in western Europe[J]. Atmospheric Research, 2001, 56(1): 89-110.
    [38]
    STACKPOLE J D. Numerical analysis of atmospheric soundings[J]. Journal of Applied Meteorology, 1967, 6(3): 464-467.
    [39]
    SHOWALTER A K. A stability index for thunderstorm forecasting[J]. Bulletin of the American Meteorological Society, 1953, 34(6): 250-252.
    [40]
    吕新刚, 周志强. 沙瓦特指数的数值计算方案比较研究[J]. 气象, 2015, 41(10): 1260-1267.
    [41]
    马明, 陶善昌, 祝宝友, 等. 1997/1998 El Nio期间中国南部闪电活动的异常特征[J]. 中国科学(D 辑: 地球科学), 2004, 34(9): 873-881.
    [42]
    封国林, 孙树鹏, 赵俊虎, 等. 基于2009年初长江中下游地区持续阴雨过程的 10-30 天延伸期稳定分量的提取及配置分析[J]. 中国科学:地球科学, 2013, 43(5): 836-847.
    [43]
    巩崇水, 曾淑玲, 王嘉媛, 等. 近30年中国雷暴天气气候特征分析[J]. 高原气象, 2013, 32(5): 1442-1449.
    [44]
    WANG B, XIANG B, LEE J Y. Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions[J]. Proceedings of the National Academy of Sciences, 2013, 110(8): 2718-2722.
    [45]
    ZHANG X, WU K, WANG B, et al. The low-frequency variance of the ocean surface wave field in the area of the Antarctic Circumpolar Current[J]. Acta Oceanologica Sinica, 2013, 32(5): 15-21.
    [46]
    陈圣劼,孙燕,韩桂荣. 太平洋年代际振荡与江苏夏季雷暴日年代际变化的联系[C]//第32届中国气象学会年会.中国气象学会,2015:11.
    [47]
    来志云, 索朗, 白玛. 近 40 年西藏地区雷暴事件的时空变化特征[J]. 高原气象, 2014 (4): 1131-1134.
    [48]
    马明, 吕伟涛, 张义军, 等. 中国雷电活动特征分析[J]. 气象科技, 2007, 35(Z1): 1-7.
    [49]
    刘维成, 陶健红, 邵爱梅. 甘肃和广东2008~ 2011 年闪电特征对比[J]. 干旱气象, 2012, 30(4): 588-592.
    [50]
    王娟, 谌芸. 2009-2012 年中国闪电分布特征分析[J]. 气象, 2015 (2): 160-170.
    [51]
    ZHANG Renhe. A diagnostic study of the impact of El Nio on the precipitation in China[J]. Advances in Atmospheric Sciences, 1999, 16(2): 229-241.
    [52]
    马明. 雷电与气候变化相互关系的一些研究[D].合肥:中国科学技术大学, 2004.
    [53]
    WILLIAMS E, STANFILL S. The physical origin of the land-ocean contrast in lightning activity[J]. Comptes Rendus Physique, 2002, 3(10): 1277-1292.
  • 加载中

Catalog

    [1]
    MARKSON R, MUIR M. Solar wind control of the Earth's electric field[J]. Science, 1980, 208(4447): 979-990.
    [2]
    WILLIAMS E R, HECKMAN S J. The local diurnal variation of cloud electrification and the global diurnal variation of negative charge on the Earth[J]. Journal of Geophysical Research: Atmospheres, 1993, 98(D3): 5221-5234.
    [3]
    PRICE C. Evidence for a link between global lightning activity and upper tropospheric water vapour[J]. Nature, 2000, 406(6793): 290-293.
    [4]
    BOND D W, STEIGER S, ZHANG R, et al. The importance of NOx production by lightning in the tropics[J]. Atmospheric Environment, 2002, 36(9): 1509-1519.
    [5]
    周筠珺, 郄秀书. 闪电产生NOx机制及中国内陆闪电产生NOx量的估算[J]. 高原气象, 2002, 21(5): 501-508.
    [6]
    郄秀书. 卫星观测到的全球闪电活动及其地域差异[J]. 地球物理学报, 2003, 46(6): 743-750.
    [7]
    郄秀书, TOUMI R, 周筠珺. 青藏高原中部地区闪电活动特征及其对对流最大不稳定能量的响应[J]. 科学通报, 2003, 48(1): 87-90.
    [8]
    郭凤霞, 鞠晓雨, 陈聪. 估算闪电产生氮氧化物量的研究回顾与进展[J]. 地球科学进展, 2013, 28(3): 305-317.
    [9]
    李照荣, 康凤琴, 马胜萍. 西北地区雷暴气候特征分析[J]. 灾害学, 2005, 20(2): 83-88.
    [10]
    冯建英, 陈佩璇, 梁东升. 西北地区雷暴的气候特征及其变化规律[J]. 甘肃科学学报, 2007, 19(3): 71-74.
    [11]
    易燕明, 杨兆礼, 万齐林, 等. 近50年广东省雷暴、闪电时空变化特征的研究[J]. 热带气象学报, 2006, 22(6): 539-546.
    [12]
    冯桂力, 胡先锋, 李采莲, 等. 青岛地区闪电活动气候特征[J]. 陕西气象, 2009 (B09): 1-4.
    [13]
    孙蟩. 北京城区与郊区雷暴气候特征及其变化对比分析[J]. 气候与环境研究, 2011, 16(5): 649-656.
    [14]
    邓德文, 周筠珺, 赵鹏国, 等. 中国典型区域雷电活动气候特征及其机制分析[J]. 气象科学, 2013 (1): 109-118.
    [15]
    郄秀书. 青藏高原闪电活动的时空分布特征[J]. 地球物理学报, 2004, 47(6): 997-1002.
    [16]
    马明, 陶善昌, 祝宝友, 等. 卫星观测的中国及周边地区闪电密度的气候分布[J]. 中国科学(D辑:地球科学), 2004, 34(4): 298-306.
    [17]
    袁铁, 郄秀书. 卫星观测到的我国闪电活动的时空分布特征[J]. 高原气象, 2004, 23(4): 488-494.
    [18]
    TOUMI R, QIE X. Seasonal variation of lightning on the Tibetan Plateau: A spring anomaly?[J]. Geophysical Research Letters, 2004, 31(4): 235-250.
    [19]
    马明, 陶善昌, 祝宝友, 等. 全球闪电活动对气温变化的响应[J]. 科学通报, 2005, 50(15): 1643-1647.
    [20]
    张义军, 孟青. 青藏高原东部地区的大气电特征[J] . 高原气象, 1998, 17( 2) : 135- 141.
    [21]
    袁铁, 郄秀书. 青藏高原中部闪电活动与相关气象要素季节变化的相关分析[J]. 气象学报, 2005, 63(1): 123-127.
    [22]
    郑栋, 张义军, 吕伟涛, 等. 大气不稳定度参数与闪电活动的预报[J]. 高原气象, 2005, 24(2): 196-203.
    [23]
    CHRISTIAN H, BLAKESLEE R, GOODMAN S, et al. The lightning imaging sensor[C]//NASA Conference Publication. NASA, 1999: 746-749.
    [24]
    BOCCIPPIO D J, KOSHAK W J, BLAKESLEE R J. Performance assessment of the optical transient detector and lightning imaging sensor. Part I: Predicted diurnal variability[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(9): 1318-1332.
    [25]
    CHRISTIAN H J, BLAKESLEE R J, BOCCIPPIO D J, et al. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D1): ACL 4-1-ACL 4-15.
    [26]
    CECIL D J, BUECHLER D E, BLAKESLEE R J. Gridded lightning climatology from TRMM-LIS and OTD: Dataset description[J]. Atmospheric Research, 2014, 135: 404-414.
    [27]
    KALNAY E, KANAMITSU M, KISTLER R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437-471.
    [28]
    DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656): 553-597.
    [29]
    BOLTON D. The computation of equivalent potential temperature[J]. Monthly Weather Review, 1980, 108(7): 1046-1053.
    [30]
    李任承, 顾光芹. 关于假相当位温的精确计算[J]. 气象, 1990, 16(3): 13-17.
    [31]
    DUGAS W A, FRITSCHEN L J, GAY L W, et al. Bowen ratio, eddy correlation, and portable chamber measurements of sensible and latent heat flux over irrigated spring wheat[J]. Agricultural and Forest Meteorology, 1991, 56(1): 1-20.
    [32]
    WARE R, ROCKEN C, SOLHEIM F, et al. GPS sounding of the atmosphere from low Earth orbit: Preliminary results[J]. Bulletin of the American Meteorological Society, 1996, 77(1): 19-40.
    [33]
    GEORGE J J. Weather forecasting for aeronautics[M]. New York: Academic Press, 2014.
    [34]
    ANDERSSON T, ANDERSSON M, JACOBSSON C, et al. Thermodynamic indices for forecasting thunderstorms in southern Sweden[J]. Meteorological Magazine, 1989, 118(1404): 141-146.
    [35]
    GOODMAN S J. Predicting thunderstorm evolution using ground-based lightning detection networks[R]. NASA, 1990: 19910006347.
    [36]
    BARLOW W. A new index for the prediction of deep convection[C]//17th Conference On Severe Local Storms. St. Louis, MO: American Meteorological Society, 1993: 129-132.
    [37]
    VAN DELDEN A. The synoptic setting of thunderstorms in western Europe[J]. Atmospheric Research, 2001, 56(1): 89-110.
    [38]
    STACKPOLE J D. Numerical analysis of atmospheric soundings[J]. Journal of Applied Meteorology, 1967, 6(3): 464-467.
    [39]
    SHOWALTER A K. A stability index for thunderstorm forecasting[J]. Bulletin of the American Meteorological Society, 1953, 34(6): 250-252.
    [40]
    吕新刚, 周志强. 沙瓦特指数的数值计算方案比较研究[J]. 气象, 2015, 41(10): 1260-1267.
    [41]
    马明, 陶善昌, 祝宝友, 等. 1997/1998 El Nio期间中国南部闪电活动的异常特征[J]. 中国科学(D 辑: 地球科学), 2004, 34(9): 873-881.
    [42]
    封国林, 孙树鹏, 赵俊虎, 等. 基于2009年初长江中下游地区持续阴雨过程的 10-30 天延伸期稳定分量的提取及配置分析[J]. 中国科学:地球科学, 2013, 43(5): 836-847.
    [43]
    巩崇水, 曾淑玲, 王嘉媛, 等. 近30年中国雷暴天气气候特征分析[J]. 高原气象, 2013, 32(5): 1442-1449.
    [44]
    WANG B, XIANG B, LEE J Y. Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions[J]. Proceedings of the National Academy of Sciences, 2013, 110(8): 2718-2722.
    [45]
    ZHANG X, WU K, WANG B, et al. The low-frequency variance of the ocean surface wave field in the area of the Antarctic Circumpolar Current[J]. Acta Oceanologica Sinica, 2013, 32(5): 15-21.
    [46]
    陈圣劼,孙燕,韩桂荣. 太平洋年代际振荡与江苏夏季雷暴日年代际变化的联系[C]//第32届中国气象学会年会.中国气象学会,2015:11.
    [47]
    来志云, 索朗, 白玛. 近 40 年西藏地区雷暴事件的时空变化特征[J]. 高原气象, 2014 (4): 1131-1134.
    [48]
    马明, 吕伟涛, 张义军, 等. 中国雷电活动特征分析[J]. 气象科技, 2007, 35(Z1): 1-7.
    [49]
    刘维成, 陶健红, 邵爱梅. 甘肃和广东2008~ 2011 年闪电特征对比[J]. 干旱气象, 2012, 30(4): 588-592.
    [50]
    王娟, 谌芸. 2009-2012 年中国闪电分布特征分析[J]. 气象, 2015 (2): 160-170.
    [51]
    ZHANG Renhe. A diagnostic study of the impact of El Nio on the precipitation in China[J]. Advances in Atmospheric Sciences, 1999, 16(2): 229-241.
    [52]
    马明. 雷电与气候变化相互关系的一些研究[D].合肥:中国科学技术大学, 2004.
    [53]
    WILLIAMS E, STANFILL S. The physical origin of the land-ocean contrast in lightning activity[J]. Comptes Rendus Physique, 2002, 3(10): 1277-1292.

    Article Metrics

    Article views (460) PDF downloads(190)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return