ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

Insight into fine structures of LiFexMn1-xO2 by synchrotron radiation-based X-ray absorption spectroscopy

Funds:  Supported by the National Natural Science Foundation of China (11179001, 11275227).
Cite this:
https://doi.org/10.3969/j.issn.0253-2778.2017.05.001
More Information
  • Author Bio:

    WU Guixian, female, born in 1991, master. Research field: energy storage and conversion material. E-mail: guixian@mail.ustc.edu.cn

  • Corresponding author: CHU Wangsheng
  • Received Date: 24 February 2016
  • Rev Recd Date: 14 April 2016
  • Publish Date: 31 May 2017
  • LiFexMn1-xO2 (0≤x≤1) compounds were synthesized by the co-precipitation method. Electrochemical tests show that the LiFe0.25Mn0.75O2 composite has a maximum reversible capacity of 180 mAh/g at 0.1 C(1 C=140 mA/g). These as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS). XRD and XAS results show that the LiFexMn1-xO2 (0<x<1) samples actually have multiple crystal phases, especially the spinel phase (LiMn2O4), Li-rich phase (Li2MnO3) and layered phase (LiFeO2). Moreover, XAS reveals that the Mn-phase and the Fe-phase are randomly stacked in the samples. The work shows the doping of Fe influences the crystal phase and local structure of the Mn-phase upon the samples and then adjusts the electrochemical performances of the cathode materials, giving an optimal proportion (x=0.25) of the spinel and Li-rich and layered phase.
    LiFexMn1-xO2 (0≤x≤1) compounds were synthesized by the co-precipitation method. Electrochemical tests show that the LiFe0.25Mn0.75O2 composite has a maximum reversible capacity of 180 mAh/g at 0.1 C(1 C=140 mA/g). These as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS). XRD and XAS results show that the LiFexMn1-xO2 (0<x<1) samples actually have multiple crystal phases, especially the spinel phase (LiMn2O4), Li-rich phase (Li2MnO3) and layered phase (LiFeO2). Moreover, XAS reveals that the Mn-phase and the Fe-phase are randomly stacked in the samples. The work shows the doping of Fe influences the crystal phase and local structure of the Mn-phase upon the samples and then adjusts the electrochemical performances of the cathode materials, giving an optimal proportion (x=0.25) of the spinel and Li-rich and layered phase.
  • loading
  • [1]
    OKUBO M, HOSONO E, KIM J, et al. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode [J]. J Am Chem Soc, 2007, 129: 7444-7452.
    [2]
    SCOTT I D, JUNG Y S, CAVANAGH A S, et al. Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications [J]. Nano Lett, 2011, 11: 414-418.
    [3]
    RILEY L A, VAN ATTA S, CAVANAGH A S, et al. Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material [J]. J Power Sources, 2011, 196: 3317-3324.
    [4]
    ARMSTRONG A R, BRUCE P G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries [J]. Nature, 1996, 381: 499-500.
    [5]
    AMATUCCI G, TARASCON J M. Optimization of insertion compounds such as LiMn2O4 for Li-ion batteries [J]. J Electrochem Soc, 2002, 149(12): K31-K46.
    [6]
    XU B, QIAN D, WANG Z, et al. Recent progress in cathode materials research for advanced lithium ion batteries [J]. Mater Sci Eng R, 2012, 73: 51-65.
    [7]
    LEE H W, MURALIDHARAN P, RUFFO R, et al. Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries [J]. Nano Lett, 2010, 10: 3852-3856.
    [8]
    LEE S, CHO Y, SONG H K, et al. Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries [J]. Angew Chem Int Ed, 2012, 51: 8748-8752.
    [9]
    LIM J, MOON J, GIM J, et al. Fully activated Li2MnO3 nanoparticles by oxidation reaction [J]. J Mater Chem, 2012, 22: 11772.
    [10]
    WU F, LI N, SU Y, et al. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries [J]. Nano Lett, 2014, 14: 3550-3555.
    [11]
    ZHENG J, GU M, XIAO J, et al. Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process [J]. Nano Lett, 2013, 13: 3824-3830.
    [12]
    WU F, LI N, SU Y, et al. Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries [J]. Adv Mater, 2013, 25: 3722-3726.
    [13]
    LUO D, LI G, FU C, et al. A new spinel-layered Li-rich microsphere as a high-rate cathode material for Li-ion batteries [J]. Adv Energy Mater, 2014, 4: 1400062.
    [14]
    LEE E S, HUQ A, CHANG H Y, et al. High-voltage, high-energy layered-spinel composite cathodes with superior cycle life for lithium-ion batteries [J]. Chem Mat, 2012, 24: 600-612.
    [15]
    NAYAK P K, GRINBLAT J, LEVI M D, et al. Electrochemical performance of a layered-spinel integrated Li[Ni1/3Mn2/3]O2 as a high capacity cathode material for Li-ion batteries [J]. Chem Mat, 2015, 27: 2600-2611.
    [16]
    LEE E S, HUQ A, MANTHIRAM A. Understanding the effect of synthesis temperature on the structural and electrochemical characteristics of layered-spinel composite cathodes for lithium-ion batteries [J]. J Power Sources, 2013, 240: 193-203.
    [17]
    CABANA J, JOHNSON C S, YANG X Q, et al. Structural complexity of layered-spinel composite electrodes for Li-ion batteries [J]. J Mater Res, 2011, 25(8): 1601-1616.
    [18]
    ITO A, SATO Y, SANADA T, et al. In situ X-ray absorption spectroscopic study of Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 [J]. J Power Sources, 2011, 196: 6828-6834.
    [19]
    WU Z Y, MOTTANA A, MARCELLI A, et al. X-ray absorption near-edge structure at the Mg and Fe K-edges in olivine minerals [J]. Phys Lett B, 2004, 69: 104106.
    [20]
    YABUUCHI N, YOSHII K, MYUNG S T, et al. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-Li[Co1/3Ni1/3Mn1/3]O2 [J]. J Am Chem Soc, 2011, 133: 4404-4419.
    [21]
    YUGE R, TODA A, KUROSHIMA S, et al. Remarkable charge-discharge mechanism for a large capacity in Fe-containing Li2MnO3 cathodes [J]. J Electrochem Soc, 2014, 161(14): A2237-A2242.
    [22]
    NEWVILLE M. IFEFFIT: Interactive XAFS analysis and FEFF fitting [J]. J Synchrotron Radiat, 2001, 8: 322-324.
    [23]
    RAVEL B, NEWVILLE M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT [J]. J Synchrotron Radiat, 2005, 12: 537-541.
    [24]
    XIA Y, ZHOU Y, YOSHIO M. Capacity fading on cycling of 4 V Li/LiMn2O4 cells [J]. J Electrochem Soc, 1997, 144: 2593-2600.
    [25]
    MCBREEN J. The application of synchrotron techniques to the study of lithium-ion batteries [J]. J Solid State Electrochem, 2009, 13: 1051-1061.
    [26]
    CABARET D, BORDAGE A, JUHIN A, et al. First-principles calculations of X-ray absorption spectra at the K-edge of 3d transition metals: An electronic structure analysis of the pre-edge [J]. Phys Chem Chem Phys, 2010, 12: 5619-5633.
    [27]
    YU D Y W, YANAGIDA K. Structural analysis of Li2MnO3 and related Li-Mn-O materials [J]. J Electrochem Soc, 2011, 158(9): A1015-A1022.
    [28]
    HUANG W, TAO S, ZHOU J, et al. Phase separations in LiFe1-xMnxPO4: A random stack model for efficient cathode materials [J]. J Phys Chem C, 2014, 118: 796-803.
    [29]
    YAMAMOTO T. Assignment of pre-edge peaks in K-edge X-ray absorption spectra of 3d transition metal compounds: Electric dipole or quadrupole? [J] X-Ray Spectrom, 2008, 37: 572-584.
    [30]
    GROOT F D. High-resolution X-ray emission and X-ray absorption spectroscopy [J]. Chem Rev, 2001, 101: 1779-1808.
    [31]
    HWANG S J, PARK D H, CHOY J H, et al. Effect of chromium substitution on the lattice vibration of spinel lithium manganate: A new interpretation of the raman spectrum of LiMn2O4 [J]. J Phys Chem B, 2004, 108: 12713-12717.
    [32]
    BRIOIS V, SAINCTAVIT P, LONG G J, et al. Importance of photoelectron multiple scattering in the iron K-Edge X-ray absorption spectra of spin-crossover complexes: Full multiple scattering calculations for severaliron (II) trispyrazolylborate and trispyrazolylmethane complexes [J]. Inorg Chem, 2001, 40: 912-918.
  • 加载中

Catalog

    [1]
    OKUBO M, HOSONO E, KIM J, et al. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode [J]. J Am Chem Soc, 2007, 129: 7444-7452.
    [2]
    SCOTT I D, JUNG Y S, CAVANAGH A S, et al. Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications [J]. Nano Lett, 2011, 11: 414-418.
    [3]
    RILEY L A, VAN ATTA S, CAVANAGH A S, et al. Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material [J]. J Power Sources, 2011, 196: 3317-3324.
    [4]
    ARMSTRONG A R, BRUCE P G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries [J]. Nature, 1996, 381: 499-500.
    [5]
    AMATUCCI G, TARASCON J M. Optimization of insertion compounds such as LiMn2O4 for Li-ion batteries [J]. J Electrochem Soc, 2002, 149(12): K31-K46.
    [6]
    XU B, QIAN D, WANG Z, et al. Recent progress in cathode materials research for advanced lithium ion batteries [J]. Mater Sci Eng R, 2012, 73: 51-65.
    [7]
    LEE H W, MURALIDHARAN P, RUFFO R, et al. Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries [J]. Nano Lett, 2010, 10: 3852-3856.
    [8]
    LEE S, CHO Y, SONG H K, et al. Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries [J]. Angew Chem Int Ed, 2012, 51: 8748-8752.
    [9]
    LIM J, MOON J, GIM J, et al. Fully activated Li2MnO3 nanoparticles by oxidation reaction [J]. J Mater Chem, 2012, 22: 11772.
    [10]
    WU F, LI N, SU Y, et al. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries [J]. Nano Lett, 2014, 14: 3550-3555.
    [11]
    ZHENG J, GU M, XIAO J, et al. Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process [J]. Nano Lett, 2013, 13: 3824-3830.
    [12]
    WU F, LI N, SU Y, et al. Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries [J]. Adv Mater, 2013, 25: 3722-3726.
    [13]
    LUO D, LI G, FU C, et al. A new spinel-layered Li-rich microsphere as a high-rate cathode material for Li-ion batteries [J]. Adv Energy Mater, 2014, 4: 1400062.
    [14]
    LEE E S, HUQ A, CHANG H Y, et al. High-voltage, high-energy layered-spinel composite cathodes with superior cycle life for lithium-ion batteries [J]. Chem Mat, 2012, 24: 600-612.
    [15]
    NAYAK P K, GRINBLAT J, LEVI M D, et al. Electrochemical performance of a layered-spinel integrated Li[Ni1/3Mn2/3]O2 as a high capacity cathode material for Li-ion batteries [J]. Chem Mat, 2015, 27: 2600-2611.
    [16]
    LEE E S, HUQ A, MANTHIRAM A. Understanding the effect of synthesis temperature on the structural and electrochemical characteristics of layered-spinel composite cathodes for lithium-ion batteries [J]. J Power Sources, 2013, 240: 193-203.
    [17]
    CABANA J, JOHNSON C S, YANG X Q, et al. Structural complexity of layered-spinel composite electrodes for Li-ion batteries [J]. J Mater Res, 2011, 25(8): 1601-1616.
    [18]
    ITO A, SATO Y, SANADA T, et al. In situ X-ray absorption spectroscopic study of Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 [J]. J Power Sources, 2011, 196: 6828-6834.
    [19]
    WU Z Y, MOTTANA A, MARCELLI A, et al. X-ray absorption near-edge structure at the Mg and Fe K-edges in olivine minerals [J]. Phys Lett B, 2004, 69: 104106.
    [20]
    YABUUCHI N, YOSHII K, MYUNG S T, et al. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-Li[Co1/3Ni1/3Mn1/3]O2 [J]. J Am Chem Soc, 2011, 133: 4404-4419.
    [21]
    YUGE R, TODA A, KUROSHIMA S, et al. Remarkable charge-discharge mechanism for a large capacity in Fe-containing Li2MnO3 cathodes [J]. J Electrochem Soc, 2014, 161(14): A2237-A2242.
    [22]
    NEWVILLE M. IFEFFIT: Interactive XAFS analysis and FEFF fitting [J]. J Synchrotron Radiat, 2001, 8: 322-324.
    [23]
    RAVEL B, NEWVILLE M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT [J]. J Synchrotron Radiat, 2005, 12: 537-541.
    [24]
    XIA Y, ZHOU Y, YOSHIO M. Capacity fading on cycling of 4 V Li/LiMn2O4 cells [J]. J Electrochem Soc, 1997, 144: 2593-2600.
    [25]
    MCBREEN J. The application of synchrotron techniques to the study of lithium-ion batteries [J]. J Solid State Electrochem, 2009, 13: 1051-1061.
    [26]
    CABARET D, BORDAGE A, JUHIN A, et al. First-principles calculations of X-ray absorption spectra at the K-edge of 3d transition metals: An electronic structure analysis of the pre-edge [J]. Phys Chem Chem Phys, 2010, 12: 5619-5633.
    [27]
    YU D Y W, YANAGIDA K. Structural analysis of Li2MnO3 and related Li-Mn-O materials [J]. J Electrochem Soc, 2011, 158(9): A1015-A1022.
    [28]
    HUANG W, TAO S, ZHOU J, et al. Phase separations in LiFe1-xMnxPO4: A random stack model for efficient cathode materials [J]. J Phys Chem C, 2014, 118: 796-803.
    [29]
    YAMAMOTO T. Assignment of pre-edge peaks in K-edge X-ray absorption spectra of 3d transition metal compounds: Electric dipole or quadrupole? [J] X-Ray Spectrom, 2008, 37: 572-584.
    [30]
    GROOT F D. High-resolution X-ray emission and X-ray absorption spectroscopy [J]. Chem Rev, 2001, 101: 1779-1808.
    [31]
    HWANG S J, PARK D H, CHOY J H, et al. Effect of chromium substitution on the lattice vibration of spinel lithium manganate: A new interpretation of the raman spectrum of LiMn2O4 [J]. J Phys Chem B, 2004, 108: 12713-12717.
    [32]
    BRIOIS V, SAINCTAVIT P, LONG G J, et al. Importance of photoelectron multiple scattering in the iron K-Edge X-ray absorption spectra of spin-crossover complexes: Full multiple scattering calculations for severaliron (II) trispyrazolylborate and trispyrazolylmethane complexes [J]. Inorg Chem, 2001, 40: 912-918.

    Article Metrics

    Article views (416) PDF downloads(180)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return