[1] |
CUI Jingan. Permanence and periodic solution of Lotka-Volterra system with time delay[J]. Acta Mathmatica Sinia, 2000, 47(1):511-519.崔景安.时滞Lotka-Volterra系统的持久性和周期解[J]. 数学学报, 2000, 47(1):511-519.
|
[2] |
HUI Jing, CHEN Lansun. Periodity and stability in impulsive equation with delay[J]. Acta Mathmatica Sinia, 2005, 48(6):1 137-1 144.惠静,陈兰荪. 脉冲时滞微分方程的周期性和稳定性[J]. 数学学报,2005,48(6): 1 137-1 144.
|
[3] |
CHEN Fengde, SHI Jinlin, CHEN Xiaoxing. Periodicity in a Lotka-Volterra facultative mutualism system with several delays[J]. Chinese Journal of Engineering Mathematics, 2004, 21(3): 403-409.
|
[4] |
CHENG Yongkuan, DOU Dou.On almost automorphic solutions of the competing species problems[J].Journal of University of Science and Technology of China, 2006,36(9):956-959.程永宽,窦斗.竞争系统的几乎自守解[J].中国科学技术大学学报,2006,36(9):956-959.
|
[5] |
ZHAO Ming, CHENG Rongfu. Existence of periodic solution of a food chain system with biocontrol and ratio functional response[J]. Journal of Jilin University (Science Edition), 2009, 47(4): 730-736. 赵明,程荣福. 一类具生物控制和比率型功能反应的食物链系统周期解的存在性[J]. 吉林大学学报(理学版), 2009, 47(4): 730-736.
|
[6] |
SHAO Yuanfu, DAI Binxiang. Multiple positive periodic solutions of a delayed ratio-dependent predator-prey model with functional response and impulse[J]. Mathem Atica Applicata, 2011, 24(1): 30-39.邵远夫,戴斌祥. 一类含功能反应与脉冲的时滞比率依赖捕食者捕食者-食饵模型的多重正周期解[J]. 应用数学,2011, 24(1): 30-39.
|
[7] |
LIU Kaili, DOU Jiawei. The periodic solutions and globally asymptotic properties of L-V system with impulsive effects[J]. Journal of Xian University of Technology, 2012,28(2): 235-239.刘凯丽,窦家维.一类脉冲L-V系统的周期解和全局渐近性质[J]. 西安理工大学学报,2012,28(2): 235-239.
|
[8] |
WEI F Y, WANG S H. Positive periodic solutions of nonautonomous competitive systems with infinite delay and diffusion [J]. Journal of Biomathematics, 2012, 27(2): 193-202.
|
[9] |
GOPALSAMY K, Weng P X. Feedback regulation of logistic growth[J]. Internat Math and Math Sci, 1993, 16: 177-192.
|
[10] |
HUANG Zhenkun, CHEN Fengde. Almost periodic solution in two species competitive system with feedback controls [J]. Journal of Biomathematics, 2005, 20(1): 28-32.黄振坤,陈凤德. 具有反馈控制的两种群竞争系统的概周期解[J]. 生物数学学报, 2005, 20(1): 28-32.
|
[11] |
DING Xiaoquan, CHENG Shuhan. The stability of delayed stage-structured population growth model with feedback controls[J]. Journal of Biomathematics, 2006, 21(2): 225-232.丁孝全,程述汉.具反馈控制的时滞阶段结构种群模型[J]. 生物数学学报, 2006, 21(2): 225-232.
|
[12] |
LI Hui, WANG Yifei. Stability of a delayed stage structured population growth model with feedback controls [J]. Journal of Beihua University (Natural Science), 2008, 9(5): 391-395.李辉,王艺霏.一个具反馈控制的时滞阶段结构种群模型的稳定性[J]. 北华大学学报(自然科学版), 2008,9(5): 391-395.
|
[13] |
CHEN Fengde, YUAN Yuqing, WU Yumen. Research progress of single population model with feedback control [J]. Journal of Fuzhou University (Natural Science), 2011, 39(5): 617-621.陈凤德,阮育清,吴玉敏.具反馈控制的单种群模型研究进展[J].福州大学学报(自然科学版), 2011,39(5): 617-621.
|
[14] |
GUI Zhanji. Biodynamics Model and Computer Simulation[M]. Beijing: Science Press,2005. 桂占吉.生物动力学模型与计算机仿真[M]. 北京:科学出版社,2005.
|
[15] |
GAINES R E, MAWHIN J L. Coincidence Degree and Nonlinear Differential Equations[M]. Berlin: Springer-Verlag, 1977: 40-45.
|
[16] |
BARBALAT I. System dequation differentilles doscilltion nonlinears [J].Rev Math Pure and Appl, 1959, 4:267-270.
|
[1] |
CUI Jingan. Permanence and periodic solution of Lotka-Volterra system with time delay[J]. Acta Mathmatica Sinia, 2000, 47(1):511-519.崔景安.时滞Lotka-Volterra系统的持久性和周期解[J]. 数学学报, 2000, 47(1):511-519.
|
[2] |
HUI Jing, CHEN Lansun. Periodity and stability in impulsive equation with delay[J]. Acta Mathmatica Sinia, 2005, 48(6):1 137-1 144.惠静,陈兰荪. 脉冲时滞微分方程的周期性和稳定性[J]. 数学学报,2005,48(6): 1 137-1 144.
|
[3] |
CHEN Fengde, SHI Jinlin, CHEN Xiaoxing. Periodicity in a Lotka-Volterra facultative mutualism system with several delays[J]. Chinese Journal of Engineering Mathematics, 2004, 21(3): 403-409.
|
[4] |
CHENG Yongkuan, DOU Dou.On almost automorphic solutions of the competing species problems[J].Journal of University of Science and Technology of China, 2006,36(9):956-959.程永宽,窦斗.竞争系统的几乎自守解[J].中国科学技术大学学报,2006,36(9):956-959.
|
[5] |
ZHAO Ming, CHENG Rongfu. Existence of periodic solution of a food chain system with biocontrol and ratio functional response[J]. Journal of Jilin University (Science Edition), 2009, 47(4): 730-736. 赵明,程荣福. 一类具生物控制和比率型功能反应的食物链系统周期解的存在性[J]. 吉林大学学报(理学版), 2009, 47(4): 730-736.
|
[6] |
SHAO Yuanfu, DAI Binxiang. Multiple positive periodic solutions of a delayed ratio-dependent predator-prey model with functional response and impulse[J]. Mathem Atica Applicata, 2011, 24(1): 30-39.邵远夫,戴斌祥. 一类含功能反应与脉冲的时滞比率依赖捕食者捕食者-食饵模型的多重正周期解[J]. 应用数学,2011, 24(1): 30-39.
|
[7] |
LIU Kaili, DOU Jiawei. The periodic solutions and globally asymptotic properties of L-V system with impulsive effects[J]. Journal of Xian University of Technology, 2012,28(2): 235-239.刘凯丽,窦家维.一类脉冲L-V系统的周期解和全局渐近性质[J]. 西安理工大学学报,2012,28(2): 235-239.
|
[8] |
WEI F Y, WANG S H. Positive periodic solutions of nonautonomous competitive systems with infinite delay and diffusion [J]. Journal of Biomathematics, 2012, 27(2): 193-202.
|
[9] |
GOPALSAMY K, Weng P X. Feedback regulation of logistic growth[J]. Internat Math and Math Sci, 1993, 16: 177-192.
|
[10] |
HUANG Zhenkun, CHEN Fengde. Almost periodic solution in two species competitive system with feedback controls [J]. Journal of Biomathematics, 2005, 20(1): 28-32.黄振坤,陈凤德. 具有反馈控制的两种群竞争系统的概周期解[J]. 生物数学学报, 2005, 20(1): 28-32.
|
[11] |
DING Xiaoquan, CHENG Shuhan. The stability of delayed stage-structured population growth model with feedback controls[J]. Journal of Biomathematics, 2006, 21(2): 225-232.丁孝全,程述汉.具反馈控制的时滞阶段结构种群模型[J]. 生物数学学报, 2006, 21(2): 225-232.
|
[12] |
LI Hui, WANG Yifei. Stability of a delayed stage structured population growth model with feedback controls [J]. Journal of Beihua University (Natural Science), 2008, 9(5): 391-395.李辉,王艺霏.一个具反馈控制的时滞阶段结构种群模型的稳定性[J]. 北华大学学报(自然科学版), 2008,9(5): 391-395.
|
[13] |
CHEN Fengde, YUAN Yuqing, WU Yumen. Research progress of single population model with feedback control [J]. Journal of Fuzhou University (Natural Science), 2011, 39(5): 617-621.陈凤德,阮育清,吴玉敏.具反馈控制的单种群模型研究进展[J].福州大学学报(自然科学版), 2011,39(5): 617-621.
|
[14] |
GUI Zhanji. Biodynamics Model and Computer Simulation[M]. Beijing: Science Press,2005. 桂占吉.生物动力学模型与计算机仿真[M]. 北京:科学出版社,2005.
|
[15] |
GAINES R E, MAWHIN J L. Coincidence Degree and Nonlinear Differential Equations[M]. Berlin: Springer-Verlag, 1977: 40-45.
|
[16] |
BARBALAT I. System dequation differentilles doscilltion nonlinears [J].Rev Math Pure and Appl, 1959, 4:267-270.
|