ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

Measuring the leading order hadronic contribution to the muon g-2 in the space-like region

Funds:  Supported by the Italian MIUR-PRIN project (2010YJ2NYW)
Cite this:
https://doi.org/10.3969/j.issn.0253-2778.2016.05.010
More Information
  • Author Bio:

    CARLONI CALAME C.M., male, born in 1974, PhD. Research field: Standard Model phenomenology, higher order corrections, Monte Carlo simulations. E-mail: carlo.carloni.calame@pv.infn.it

  • Received Date: 30 November 2015
  • Accepted Date: 20 April 2016
  • Rev Recd Date: 20 April 2016
  • Publish Date: 31 May 2016
  • Recently a novel approach to determining the leading hadronic corrections to the muon g-2 has been proposed. It consists in a measurement of the effective electromagnetic coupling in the space-like region extracted from Bhabha scattering data. The new method may become feasible at flavor factories, leading to an alternative determination, possibly competitive with the accuracy of the present evaluations based on the dispersive approach via time-like data.
    Recently a novel approach to determining the leading hadronic corrections to the muon g-2 has been proposed. It consists in a measurement of the effective electromagnetic coupling in the space-like region extracted from Bhabha scattering data. The new method may become feasible at flavor factories, leading to an alternative determination, possibly competitive with the accuracy of the present evaluations based on the dispersive approach via time-like data.
  • loading
  • [1]
    CARLONI CALAME C M, PASSERA M, TRENTADUE L, et al. A new approach to evaluate the leading hadronic corrections to the muon g-2[J]. Phys Lett B, 2015, 746: 325-329.
    [2]
    BENNETT G W, BOUSQUET B, BROWN H N, et al (Muon g-2 Collaboration). Final report of the E821 muon anomalous magnetic moment measurement at BNL[J]. Phys Rev D, 2006, 73: 072003.
    [3]
    JEGERLEHNER F, NYFFELER A. The muon g-2 [J]. Phys Rep, 2009, 477: 1-110.
    [4]
    BLUM T, DENIG A, LOGASHENKO I, et al. The muon (g-2) theory value: Present and future[DB/OL]. arXiv:1311.2198 [hep-ph].
    [5]
    MELNIKOV K, VAINSHTEIN A. Theory of the Muon Anomalous Magnetic Moment[M]. New York: Springer, 2006.
    [6]
    DAVIER M, MARCIANO W J. The theoretical prediction for the muon anomalous magnetic moment[J]. Ann Rev Nucl Part Sci, 2004, 54: 115-140.
    [7]
    PASSERA M. The standard model prediction of the muon anomalous magnetic moment[J]. J Phys G, 2005, 31: R75-R94.
    [8]
    KNECHT M. The anomalous magnetic moment of the muon: A theoretical introduction[J]. Lect Notes Phys, 2004, 629: 37-84.
    [9]
    JEGERLEHNER F. The Anomalous Magnetic Moment of the Muon[M]. New York: Springer, 2008.
    [10]
    GRANGE J, GUARINO V, WINTER P, et al (Muon g-2 Collaboration). Muon (g-2) technical design report[DB/OL]. arXiv: 1501.06858[physics.ins-det].
    [11]
    VENANZONI G (for the Muon g-2 Collaboration). The new muon g-2 experiment at Fermilab[DB/OL]. arXiv:1411.2555 [physics.ins-det].
    [12]
    SAITO N, J-PARC g-2/EDM Collaboration. A novel precision measurement of muon g-2 and EDM at J-PARC[J]. AIP Conf Proc, 2012, 1467: 45-46.
    [13]
    VENANZONI G. Hadronic contribution to the anomalous magnetic moment of the muon[J]. Nuovo Cim C, 2014, 37(2): 165-171.
    [14]
    VENANZONI G. Latest on g-2 from experiment[J]. Frascati Phys Ser, 2012, 54: 52-67.
    [15]
    FEDOTOVICH G V (on behalf of the CMD-2 Collaboration). Prospects of improving accuracy of the hadronic cross section measurements to the 10-3 level at the VEPP-2000 e+e- collider: Experimental and theoretical problems[J]. Nucl Phys (Proc Suppl), 2008,181-182: 146-150.
    [16]
    KRAUSE B. Higher-order hadronic contributions to the anomalous magnetic moment of leptons[J]. Phys Lett B, 1997, 390: 392-400.
    [17]
    KNECHT M, NYFFELER A. Hadronic light-by-light corrections to the muon g-2: The pion-pole contribution[J]. Phys Rev D, 2002, 65: 073034.
    [18]
    MELNIKOV K, VAINSHTEIN A. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment reexamined[J]. Phys Rev D, 2004, 70: 113006.
    [19]
    PRADES J, DE RAFAEL E, VAINSHTEIN A. The hadronic light-by-light scattering contribution to the muon and electron anomalous magnetic moments[DB/OL]. arXiv:0901.0306 [hep-ph].
    [20]
    COLANGELO G, HOFERICHTER M, PROCURA M, et al. Dispersive approach to hadronic light-by-light scattering[J]. JHEP, 2014, 9: 91.
    [21]
    COLANGELO G, HOFERICHTER M, KUBIS B, et al. Towards a data-driven analysis of hadronic light-by-light scattering[J]. Phys Lett B, 2014, 738: 6-12.
    [22]
    PAUK V, VANDERHAEGHEN M. Anomalous magnetic moment of the muon in a dispersive approach[J]. Phys Rev D, 2014, 90:113012.
    [23]
    BLUM T, CHOWDHURY S, HAYAKAWA M, et al. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD[J]. Phys Rev Lett, 2015, 114: 012001.
    [24]
    KURZ A, LIU T, MARQUARD P,et al. Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order[J]. Phys Lett B, 2014, 734: 144-147.
    [25]
    COLANGELO G, HOFERICHTER M, NYFFELER A, et al. Remarks on higher-order hadronic corrections to the muon g-2[J]. Phys Lett B, 2014, 735: 90-91.
    [26]
    BOUCHIAT C, MICHELL. La résonance dans la diffusion méson π-méson π et le moment magnétique anormal du méson μ[J]. J Phys Radium, 1961, 22: 121.
    [27]
    DURAND L. Pionic contributions to the magnetic moment of the muon[J]. Phys Rev, 1962, 128: 441-448(Erratum-ibid 1963, 129: 2835).
    [28]
    GOURDIN M, DE RAFAEL E. Hadronic contributions to the muon g-factor[J]. Nucl Phys B, 1969, 10: 667-674.
    [29]
    ARBUZOV A B, HAIDT D, MATTEUZZI C, et al. The running of the electromagnetic coupling α in small angle Bhabha scattering[J]. Eur Phys J C, 2004, 34: 267-275.
    [30]
    ABBIENDI G, et al (OPAL Collaboration). Measurement of the running of the QED coupling in small-angle Bhabha scattering at LEP[J]. Eur Phys J C, 2006, 45: 1-21.
    [31]
    DAVIER M, HOECKER A, MALAESCU B, et al. Reevaluation of the hadronic contributions to the muon g-2 and to α(M2Z)[J]. Eur Phys J C, 2011, 71: 1515(Erratum-ibid, 2012, 72: 1874).
    [32]
    HAGIWARA K, LIAO R, MARTIN A D, et al. (g-2)μ and α(M2Z) re-evaluated using new precise data[J]. J Phys G, 2011, 38: 085003.
    [33]
    HARLANDER R V, STEINHAUSER M. rhad: A program for the evaluation of the hadronic R-ratio in the perturbative regime of QCD[J]. Comput Phys Commun, 2003, 153: 244-274.
    [34]
    LAUTRUP B E, PETERMAN A, DE RAFAEL E. Recent developments in the comparison between theory and experiments in quantum electrodynamics[J]. Phys Rep, 1972, 3:193-259.
    [35]
    AUBIN C, BLUM T. Calculating the hadronic vacuum polarization and leading hadronic contribution to the muon anomalous magnetic moment with improved staggered quarks[J]. Phys Rev D, 2007, 75: 114502.
    [36]
    BOYLE P, DEL DEBBIO L, KERRANE E, et al. Lattice determination of the hadronic contribution to the muon g-2 using dynamical domain wall fermions[J]. Phys Rev D, 2012, 85:074504.
    [37]
    FENG X, JANSEN K, PETSCHLIES M, et al. Two-flavor QCD correction to lepton magnetic moments at leading order in the electromagnetic coupling[J]. Phys Rev Lett, 2011, 107: 081802.
    [38]
    DELLA MORTE M, JAGER B, JUTTNER A, et al. Towards a precise lattice determination of the leading hadronic contribution to (g-2)μ[J]. JHEP, 2012, 1203: 055.
    [39]
    BLUM T, HAYAKAWA M, IZUBUCHI T. Hadronic corrections to the muon anomalous magnetic moment from lattice QCD[D]. PoS, 2012: PoS(Lattice 2012)022.
    [40]
    STEINHAUSER M. Leptonic contribution to the effective electromagnetic coupling constant up to three loops[J]. Phys Lett B, 1998, 429: 158-161.
    [41]
    BAIKOV P A, CHETYRKIN K G, KUHN J H, et al. The relation between the QED charge renormalized in MS and on-shell schemes at four loops, the QED on-shell β-function at five loops and asymptotic contributions to the muon anomaly at five and six loops[J]. Nucl Phys B, 2013, 867: 182-202.
    [42]
    STURM C. Leptonic contributions to the effective electromagnetic coupling at four-loop order in QED[J]. Nucl Phys B, 2013, 874: 698-719.
    [43]
    BAIKOV P A, MAIER A, MARQUARD P. The QED vacuum polarization function at four loops and the anomalous magnetic moment at five loops[J]. Nucl Phys B, 2013, 877: 647-661.
    [44]
    JEGERLEHNER F. Hadronic Contributions to the photon vacuum polarization and their role in precision physics[C]// Proceedings of Fifty Years of Electroweak Physics: A Symposium In Honour of Professor Alberto Sirlins 70th Birthday. New York: New York University, 2000.
    [45]
    JEGERLEHNER F. Hadronic contributions to the photon vacuum polarization and their role in precision physics[J]. J Phys G, 2003, 29: 101-110.
    [46]
    EIDELMAN S, JEGERLEHNER F. Hadronic contributions to (g-2) of the leptons and to the effective fine structure constant α(M2Z) [J]. Z Phys C, 1995, 67: 585-601.
    [47]
    JEGERLEHNER F. The running fine structure constant α(E) via the Adler function[J]. Nucl Phys Proc Suppl, 2008, 181-182: 135-140.
    [48]
    BICER M, YILDIZ H D, YILDIZ I, et al (TLEP Design Study Working Group Collaboration). First look at the physics case of TLEP[DB/OL]. arXiv:1308.6176 [hep-ex].
    [49]
    DJOUADI A, LYKKEN J, MNIG K, et al (ILC Collaboration). International linear collider reference design report volume 2: Physics at the ILC[DB/OL].arXiv:0709.1893 [hep-ph].
    [50]
    BALOSSINI G, CARLONI CALAME C M, MONTAGNA G, et al. Matching perturbative and parton shower corrections to Bhabha process at flavour factories[J]. Nucl Phys B, 2006, 758: 227-253.
    [51]
    ACTIS S, ARBUZOV A, BALOSSINI G, et al., Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data[J]. Eur Phys J C, 2010, 66: 585-686.
    [52]
    HAGIWARA K, MARTIN A D, NOMURA D, et al. Improved predictions for g-2 of the muon and αQED(M2Z) [J]. Phys Lett B, 2007, 649: 173-179.
    [53]
    HAGIWARA K, MARTIN A D, NOMURA D, et al. Predictions for g-2 of the muon and αQED(M2Z) [J]. Phys Rev D, 2004, 69: 093003.
  • 加载中

Catalog

    [1]
    CARLONI CALAME C M, PASSERA M, TRENTADUE L, et al. A new approach to evaluate the leading hadronic corrections to the muon g-2[J]. Phys Lett B, 2015, 746: 325-329.
    [2]
    BENNETT G W, BOUSQUET B, BROWN H N, et al (Muon g-2 Collaboration). Final report of the E821 muon anomalous magnetic moment measurement at BNL[J]. Phys Rev D, 2006, 73: 072003.
    [3]
    JEGERLEHNER F, NYFFELER A. The muon g-2 [J]. Phys Rep, 2009, 477: 1-110.
    [4]
    BLUM T, DENIG A, LOGASHENKO I, et al. The muon (g-2) theory value: Present and future[DB/OL]. arXiv:1311.2198 [hep-ph].
    [5]
    MELNIKOV K, VAINSHTEIN A. Theory of the Muon Anomalous Magnetic Moment[M]. New York: Springer, 2006.
    [6]
    DAVIER M, MARCIANO W J. The theoretical prediction for the muon anomalous magnetic moment[J]. Ann Rev Nucl Part Sci, 2004, 54: 115-140.
    [7]
    PASSERA M. The standard model prediction of the muon anomalous magnetic moment[J]. J Phys G, 2005, 31: R75-R94.
    [8]
    KNECHT M. The anomalous magnetic moment of the muon: A theoretical introduction[J]. Lect Notes Phys, 2004, 629: 37-84.
    [9]
    JEGERLEHNER F. The Anomalous Magnetic Moment of the Muon[M]. New York: Springer, 2008.
    [10]
    GRANGE J, GUARINO V, WINTER P, et al (Muon g-2 Collaboration). Muon (g-2) technical design report[DB/OL]. arXiv: 1501.06858[physics.ins-det].
    [11]
    VENANZONI G (for the Muon g-2 Collaboration). The new muon g-2 experiment at Fermilab[DB/OL]. arXiv:1411.2555 [physics.ins-det].
    [12]
    SAITO N, J-PARC g-2/EDM Collaboration. A novel precision measurement of muon g-2 and EDM at J-PARC[J]. AIP Conf Proc, 2012, 1467: 45-46.
    [13]
    VENANZONI G. Hadronic contribution to the anomalous magnetic moment of the muon[J]. Nuovo Cim C, 2014, 37(2): 165-171.
    [14]
    VENANZONI G. Latest on g-2 from experiment[J]. Frascati Phys Ser, 2012, 54: 52-67.
    [15]
    FEDOTOVICH G V (on behalf of the CMD-2 Collaboration). Prospects of improving accuracy of the hadronic cross section measurements to the 10-3 level at the VEPP-2000 e+e- collider: Experimental and theoretical problems[J]. Nucl Phys (Proc Suppl), 2008,181-182: 146-150.
    [16]
    KRAUSE B. Higher-order hadronic contributions to the anomalous magnetic moment of leptons[J]. Phys Lett B, 1997, 390: 392-400.
    [17]
    KNECHT M, NYFFELER A. Hadronic light-by-light corrections to the muon g-2: The pion-pole contribution[J]. Phys Rev D, 2002, 65: 073034.
    [18]
    MELNIKOV K, VAINSHTEIN A. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment reexamined[J]. Phys Rev D, 2004, 70: 113006.
    [19]
    PRADES J, DE RAFAEL E, VAINSHTEIN A. The hadronic light-by-light scattering contribution to the muon and electron anomalous magnetic moments[DB/OL]. arXiv:0901.0306 [hep-ph].
    [20]
    COLANGELO G, HOFERICHTER M, PROCURA M, et al. Dispersive approach to hadronic light-by-light scattering[J]. JHEP, 2014, 9: 91.
    [21]
    COLANGELO G, HOFERICHTER M, KUBIS B, et al. Towards a data-driven analysis of hadronic light-by-light scattering[J]. Phys Lett B, 2014, 738: 6-12.
    [22]
    PAUK V, VANDERHAEGHEN M. Anomalous magnetic moment of the muon in a dispersive approach[J]. Phys Rev D, 2014, 90:113012.
    [23]
    BLUM T, CHOWDHURY S, HAYAKAWA M, et al. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD[J]. Phys Rev Lett, 2015, 114: 012001.
    [24]
    KURZ A, LIU T, MARQUARD P,et al. Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order[J]. Phys Lett B, 2014, 734: 144-147.
    [25]
    COLANGELO G, HOFERICHTER M, NYFFELER A, et al. Remarks on higher-order hadronic corrections to the muon g-2[J]. Phys Lett B, 2014, 735: 90-91.
    [26]
    BOUCHIAT C, MICHELL. La résonance dans la diffusion méson π-méson π et le moment magnétique anormal du méson μ[J]. J Phys Radium, 1961, 22: 121.
    [27]
    DURAND L. Pionic contributions to the magnetic moment of the muon[J]. Phys Rev, 1962, 128: 441-448(Erratum-ibid 1963, 129: 2835).
    [28]
    GOURDIN M, DE RAFAEL E. Hadronic contributions to the muon g-factor[J]. Nucl Phys B, 1969, 10: 667-674.
    [29]
    ARBUZOV A B, HAIDT D, MATTEUZZI C, et al. The running of the electromagnetic coupling α in small angle Bhabha scattering[J]. Eur Phys J C, 2004, 34: 267-275.
    [30]
    ABBIENDI G, et al (OPAL Collaboration). Measurement of the running of the QED coupling in small-angle Bhabha scattering at LEP[J]. Eur Phys J C, 2006, 45: 1-21.
    [31]
    DAVIER M, HOECKER A, MALAESCU B, et al. Reevaluation of the hadronic contributions to the muon g-2 and to α(M2Z)[J]. Eur Phys J C, 2011, 71: 1515(Erratum-ibid, 2012, 72: 1874).
    [32]
    HAGIWARA K, LIAO R, MARTIN A D, et al. (g-2)μ and α(M2Z) re-evaluated using new precise data[J]. J Phys G, 2011, 38: 085003.
    [33]
    HARLANDER R V, STEINHAUSER M. rhad: A program for the evaluation of the hadronic R-ratio in the perturbative regime of QCD[J]. Comput Phys Commun, 2003, 153: 244-274.
    [34]
    LAUTRUP B E, PETERMAN A, DE RAFAEL E. Recent developments in the comparison between theory and experiments in quantum electrodynamics[J]. Phys Rep, 1972, 3:193-259.
    [35]
    AUBIN C, BLUM T. Calculating the hadronic vacuum polarization and leading hadronic contribution to the muon anomalous magnetic moment with improved staggered quarks[J]. Phys Rev D, 2007, 75: 114502.
    [36]
    BOYLE P, DEL DEBBIO L, KERRANE E, et al. Lattice determination of the hadronic contribution to the muon g-2 using dynamical domain wall fermions[J]. Phys Rev D, 2012, 85:074504.
    [37]
    FENG X, JANSEN K, PETSCHLIES M, et al. Two-flavor QCD correction to lepton magnetic moments at leading order in the electromagnetic coupling[J]. Phys Rev Lett, 2011, 107: 081802.
    [38]
    DELLA MORTE M, JAGER B, JUTTNER A, et al. Towards a precise lattice determination of the leading hadronic contribution to (g-2)μ[J]. JHEP, 2012, 1203: 055.
    [39]
    BLUM T, HAYAKAWA M, IZUBUCHI T. Hadronic corrections to the muon anomalous magnetic moment from lattice QCD[D]. PoS, 2012: PoS(Lattice 2012)022.
    [40]
    STEINHAUSER M. Leptonic contribution to the effective electromagnetic coupling constant up to three loops[J]. Phys Lett B, 1998, 429: 158-161.
    [41]
    BAIKOV P A, CHETYRKIN K G, KUHN J H, et al. The relation between the QED charge renormalized in MS and on-shell schemes at four loops, the QED on-shell β-function at five loops and asymptotic contributions to the muon anomaly at five and six loops[J]. Nucl Phys B, 2013, 867: 182-202.
    [42]
    STURM C. Leptonic contributions to the effective electromagnetic coupling at four-loop order in QED[J]. Nucl Phys B, 2013, 874: 698-719.
    [43]
    BAIKOV P A, MAIER A, MARQUARD P. The QED vacuum polarization function at four loops and the anomalous magnetic moment at five loops[J]. Nucl Phys B, 2013, 877: 647-661.
    [44]
    JEGERLEHNER F. Hadronic Contributions to the photon vacuum polarization and their role in precision physics[C]// Proceedings of Fifty Years of Electroweak Physics: A Symposium In Honour of Professor Alberto Sirlins 70th Birthday. New York: New York University, 2000.
    [45]
    JEGERLEHNER F. Hadronic contributions to the photon vacuum polarization and their role in precision physics[J]. J Phys G, 2003, 29: 101-110.
    [46]
    EIDELMAN S, JEGERLEHNER F. Hadronic contributions to (g-2) of the leptons and to the effective fine structure constant α(M2Z) [J]. Z Phys C, 1995, 67: 585-601.
    [47]
    JEGERLEHNER F. The running fine structure constant α(E) via the Adler function[J]. Nucl Phys Proc Suppl, 2008, 181-182: 135-140.
    [48]
    BICER M, YILDIZ H D, YILDIZ I, et al (TLEP Design Study Working Group Collaboration). First look at the physics case of TLEP[DB/OL]. arXiv:1308.6176 [hep-ex].
    [49]
    DJOUADI A, LYKKEN J, MNIG K, et al (ILC Collaboration). International linear collider reference design report volume 2: Physics at the ILC[DB/OL].arXiv:0709.1893 [hep-ph].
    [50]
    BALOSSINI G, CARLONI CALAME C M, MONTAGNA G, et al. Matching perturbative and parton shower corrections to Bhabha process at flavour factories[J]. Nucl Phys B, 2006, 758: 227-253.
    [51]
    ACTIS S, ARBUZOV A, BALOSSINI G, et al., Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data[J]. Eur Phys J C, 2010, 66: 585-686.
    [52]
    HAGIWARA K, MARTIN A D, NOMURA D, et al. Improved predictions for g-2 of the muon and αQED(M2Z) [J]. Phys Lett B, 2007, 649: 173-179.
    [53]
    HAGIWARA K, MARTIN A D, NOMURA D, et al. Predictions for g-2 of the muon and αQED(M2Z) [J]. Phys Rev D, 2004, 69: 093003.

    Article Metrics

    Article views (18) PDF downloads(134)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return