[1] |
Bondy J A, Murty U S R. Graph Theory and its Application[M]. New York: North Holland, 1976.
|
[2] |
Minc H. Nonnegative Matrices[M]. New York: John Wiley and Sons Inc, 1988.
|
[3] |
Cvetkovi D, Rowlinson P, Simi S. An Introduction to the Theory of Graph Spectra[J]. Cambridge: Cambridge Univ Press, 2010.
|
[4] |
Brauldi R A, Hoffman A J. On the spectral radius of a (0,1) matrix[J].Linear Algebra Appl, 1985, 65: 133-146.
|
[5] |
Stanley R P. A bound on the spectral radius of graphs with e edges[J].Linear Algebra Appl, 1987, 67: 267-269.
|
[6] |
Hong Y. A bound on the spectral radius of graphs[J]. Linear Algebra Appl, 1988, 108: 135-140.
|
[7] |
Hong Y, Shu J L, Fang K. A sharp upper bound of the spectral radius of graphs[J]. J Combin Theory Ser B, 2001, 81: 177-183.
|
[8] |
Das K C, Kumar P. Some new bounds radius of graphs[J]. Discrete Math, 2004, 281: 149-161.
|
[9] |
Shu J L, Wu Y R. Sharp upper bounds on the spectral radius of graphs[J]. Linear Algebra Appl, 2004, 377: 241-248.
|
[10] |
Merris R. Laplacian matries of graphs: A survey[J]. Linear Algebra Appl, 1994, 197-198: 143-176.
|
[11] |
Mohar B. Laplace eigenvalue of graphs: A survey[J]. Discrete Math, 1992,109: 171-183.
|
[12] |
Grone R, Merris R. The Laplacian spectrum of a graph[J]. SIAM J Disctete Math, 1994, 7(2): 221-229.
|
[13] |
Li J S, Pan Y L. De Caens inequality and bounds on the largest Laplacian eigenvalue of a graph[J]. Linear Algebra Appl, 2001,328: 153-160.
|
[14] |
Pan Yongliang. Sharp upper bounds for the Laplacian graph eigenvalues[J]. Linear Algebra Appl, 2002, 355: 287-295.
|
[15] |
Zhang X D. Two sharp upper bounds for the Laplacian eigenvalues[J]. Linear Algebra Appl, 2004, 376: 207-213.
|
[16] |
Das K C. A characterization on graphs which achieve the upper bound for the largest Laplacian eigenvalue of graphs[J]. Linear Algebra Appl, 2004, 376: 173-186.
|
[1] |
Bondy J A, Murty U S R. Graph Theory and its Application[M]. New York: North Holland, 1976.
|
[2] |
Minc H. Nonnegative Matrices[M]. New York: John Wiley and Sons Inc, 1988.
|
[3] |
Cvetkovi D, Rowlinson P, Simi S. An Introduction to the Theory of Graph Spectra[J]. Cambridge: Cambridge Univ Press, 2010.
|
[4] |
Brauldi R A, Hoffman A J. On the spectral radius of a (0,1) matrix[J].Linear Algebra Appl, 1985, 65: 133-146.
|
[5] |
Stanley R P. A bound on the spectral radius of graphs with e edges[J].Linear Algebra Appl, 1987, 67: 267-269.
|
[6] |
Hong Y. A bound on the spectral radius of graphs[J]. Linear Algebra Appl, 1988, 108: 135-140.
|
[7] |
Hong Y, Shu J L, Fang K. A sharp upper bound of the spectral radius of graphs[J]. J Combin Theory Ser B, 2001, 81: 177-183.
|
[8] |
Das K C, Kumar P. Some new bounds radius of graphs[J]. Discrete Math, 2004, 281: 149-161.
|
[9] |
Shu J L, Wu Y R. Sharp upper bounds on the spectral radius of graphs[J]. Linear Algebra Appl, 2004, 377: 241-248.
|
[10] |
Merris R. Laplacian matries of graphs: A survey[J]. Linear Algebra Appl, 1994, 197-198: 143-176.
|
[11] |
Mohar B. Laplace eigenvalue of graphs: A survey[J]. Discrete Math, 1992,109: 171-183.
|
[12] |
Grone R, Merris R. The Laplacian spectrum of a graph[J]. SIAM J Disctete Math, 1994, 7(2): 221-229.
|
[13] |
Li J S, Pan Y L. De Caens inequality and bounds on the largest Laplacian eigenvalue of a graph[J]. Linear Algebra Appl, 2001,328: 153-160.
|
[14] |
Pan Yongliang. Sharp upper bounds for the Laplacian graph eigenvalues[J]. Linear Algebra Appl, 2002, 355: 287-295.
|
[15] |
Zhang X D. Two sharp upper bounds for the Laplacian eigenvalues[J]. Linear Algebra Appl, 2004, 376: 207-213.
|
[16] |
Das K C. A characterization on graphs which achieve the upper bound for the largest Laplacian eigenvalue of graphs[J]. Linear Algebra Appl, 2004, 376: 173-186.
|