[1] |
刘丽君,魏来.丙型肝炎病毒的流行病学[J].传染病信息,2007,20(5):261-264.
|
[2] |
方春红,梁虹,刘美琳.1850例尖锐湿疣形态与分布特点的临床分析[J].中国麻风皮肤病杂志,2002,18(2):138-139.
|
[3] |
Fan M, Li M Y, Wang K. Global stability of an SEIS epidemic model with recruitment and a varying total population size[J]. Mathematical Biosciences, 2001, 170(2): 199-208.
|
[4] |
Xu Wenxiong, Zhang Tailei. Global stability for the model with quarantine in epidemiology[J]. Journal of Xian Jiaotong University, 2005,39(2):210-213.徐文雄,张太雷.具有隔离仓室流行病传播数学模型的全局稳定性[J].西安交通大学学报,2005,39(2):210-213.
|
[5] |
Liu W M, van den Driessche P. Epidemiological models with varying total population size and dose-dependent latent period[J]. Mathematical Biosciences, 1995, 128(1-2): 57-69.
|
[6] |
Li M Y, Graef J R, Wang L C, et al. Global dynamics of an SEIR model with varying total population size[J]. Mathematics Biosciences, 1999, 160(2): 191-213.
|
[7] |
Xu Wenxiong, Zhang Tailei, Xu Zongben. Global stability for a non-linear high dimensional autonomous differential system SEIQR model mi epidemiology[J]. Chinese Journal of Engineering Mathematics, 2007,24(1):79-86.徐文雄,张太雷,徐宗本.非线性高维自治微分系统SEIQR流行病模型全局稳定性[J].工程数学学报,2007,24(1):79-86.
|
[8] |
Sun Chengjun, Lin Yiping, Tang Shoupeng. Global stability for an special SEIR epidemic model with nonlinear incidence rates[J]. Chaos Solitons and Fractals, 2007, 33(1): 290-297.
|
[9] |
Hale J K. Ordinary Differential Equations[M]. New York: Wiley-Interscience, 1969: 296-297.
|
[10] |
Thieme H R. Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations[J]. J Math Biol, 1992, 30: 755-760.
|
[11] |
Li M Y, Muldowney J S. Global stability for the SEIR model in epidemiology[J]. Mathematics Biosciences, 1995, 125(2): 155-164.
|
[12] |
马知恩,周义仓.常微分方程定性与稳定性方法[M].北京:科教出版社,2001: 147-150.
|
[13] |
Muldowney J S. Compound matrices and ordinary differential equations[J]. Rocky Mt J Math, 1990, 20: 857-872.
|
[14] |
Hofbauer J, So J. Uniform persistence and repellors for maps[J]. Proc Amer Math Soc, 1989, 107: 1 137-1 142.
|
[15] |
Smith H L. Systems of ordinary differential equations which generate an order preserving flow[J]. SIAM Rev, 1988, 30: 87-113.
|
[16] |
Herzog G, Redheffer R. Nonautonomous SEIRS and Thron models for epidemiology and cell biology[J]. Nonlinear Anal: Real World Applications, 2004, 5: 33-44.
|
[1] |
刘丽君,魏来.丙型肝炎病毒的流行病学[J].传染病信息,2007,20(5):261-264.
|
[2] |
方春红,梁虹,刘美琳.1850例尖锐湿疣形态与分布特点的临床分析[J].中国麻风皮肤病杂志,2002,18(2):138-139.
|
[3] |
Fan M, Li M Y, Wang K. Global stability of an SEIS epidemic model with recruitment and a varying total population size[J]. Mathematical Biosciences, 2001, 170(2): 199-208.
|
[4] |
Xu Wenxiong, Zhang Tailei. Global stability for the model with quarantine in epidemiology[J]. Journal of Xian Jiaotong University, 2005,39(2):210-213.徐文雄,张太雷.具有隔离仓室流行病传播数学模型的全局稳定性[J].西安交通大学学报,2005,39(2):210-213.
|
[5] |
Liu W M, van den Driessche P. Epidemiological models with varying total population size and dose-dependent latent period[J]. Mathematical Biosciences, 1995, 128(1-2): 57-69.
|
[6] |
Li M Y, Graef J R, Wang L C, et al. Global dynamics of an SEIR model with varying total population size[J]. Mathematics Biosciences, 1999, 160(2): 191-213.
|
[7] |
Xu Wenxiong, Zhang Tailei, Xu Zongben. Global stability for a non-linear high dimensional autonomous differential system SEIQR model mi epidemiology[J]. Chinese Journal of Engineering Mathematics, 2007,24(1):79-86.徐文雄,张太雷,徐宗本.非线性高维自治微分系统SEIQR流行病模型全局稳定性[J].工程数学学报,2007,24(1):79-86.
|
[8] |
Sun Chengjun, Lin Yiping, Tang Shoupeng. Global stability for an special SEIR epidemic model with nonlinear incidence rates[J]. Chaos Solitons and Fractals, 2007, 33(1): 290-297.
|
[9] |
Hale J K. Ordinary Differential Equations[M]. New York: Wiley-Interscience, 1969: 296-297.
|
[10] |
Thieme H R. Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations[J]. J Math Biol, 1992, 30: 755-760.
|
[11] |
Li M Y, Muldowney J S. Global stability for the SEIR model in epidemiology[J]. Mathematics Biosciences, 1995, 125(2): 155-164.
|
[12] |
马知恩,周义仓.常微分方程定性与稳定性方法[M].北京:科教出版社,2001: 147-150.
|
[13] |
Muldowney J S. Compound matrices and ordinary differential equations[J]. Rocky Mt J Math, 1990, 20: 857-872.
|
[14] |
Hofbauer J, So J. Uniform persistence and repellors for maps[J]. Proc Amer Math Soc, 1989, 107: 1 137-1 142.
|
[15] |
Smith H L. Systems of ordinary differential equations which generate an order preserving flow[J]. SIAM Rev, 1988, 30: 87-113.
|
[16] |
Herzog G, Redheffer R. Nonautonomous SEIRS and Thron models for epidemiology and cell biology[J]. Nonlinear Anal: Real World Applications, 2004, 5: 33-44.
|