[1] |
Xiao J C, Yang B, Wong J I, et al. Synthesis, characterization, self-assembly, and physical properties of 11-methylbenzo[d]pyreno[4,5-b]furan [J]. Organic Letters, 2011, 13(12): 3 004-3 007.
|
[2] |
Byon H R, Kim S, Choi H C. Label-free biomolecular detection using carbon nanotube field effect transistors [J]. Nano, 2008, 3(6): 415-431.
|
[3] |
Reese C, Bao Z N. Organic single-crystal field-effect transistors [J]. Mater Today, 2007, 10(3): 20-27.
|
[4] |
Huang S, Efstathiadis H, Haldar P. Fabrication of nanorod arrays for organic solar cell applications [J]. Materials for Photovoltaics, 2005, 836: 49-53.
|
[5] |
Zhao Y S, Zhan P, Kim J, et al. Patterned growth of vertically aligned organic nanowire waveguide arrays [J]. Acs Nano, 2010, 4(3): 1 630-1 636.
|
[6] |
Peng A D, Xiao D B, Ma Y, et al. Tunable emission from doped 1,3,5-triphenyl-2-pyrazoline organic nanoparticles [J]. Adv Mater, 2005, 17(17): 2 070-2 077.
|
[7] |
Zhao Y S, Wu J S, Huang J X. Vertical organic nanowire arrays: Controlled synthesis and chemical sensors [J]. J Am Chem Soc, 2009, 131(9): 3 158-3 159.
|
[8] |
An B K, Kwon S K, Jung S D, et al. Enhanced emission and its switching in fluorescent organic nanoparticles [J]. J Am Chem Soc, 2002, 124(48): 14 410-14 415.
|
[9] |
Tian Y, He Q, Tao C, et al. Fabrication of fluorescent nanotubes basel on layer-by-layer assembly via covalent bond [J]. Langmuir, 2006, 22(1): 360-362.
|
[10] |
Minder N A, Ono S, Chen Z H, et al. Band-like electron transport in organic transistors and implication of the molecular structure for performance optimization [J]. Adv Mater, 2012, 24(4): 503-508.
|
[11] |
Kim D H, Lee D Y, Lee H S, et al. High-mobility organic transistors based on single-crystalline microribbons of triisopropylisilylethynl pentacene via solution-phase self-assembly [J]. Adv Mater, 2007, 19(5): 678-682.
|
[12] |
Yang F, Forrest S R. Photocurrent generation in nanostructured organic solar cells [J]. Acs Nano, 2008, 2(5): 1 022-1 032.
|
[13] |
Ogawa T, Kuwamoto K, Isoda S, et al. 3,4: 9,10-perylenetetracarboxylic dianhydride (PTCDA) by electron crystallography [J]. Acta Crystallogr B, 1999, 55: 123-130.
|
[14] |
Bulovic V, Forrest S R. Study of localized and extended excitons in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA).2. Photocurrent response at low electric fields [J]. Chem Phys, 1996, 210(1-2): 13-25.
|
[15] |
Hoffmann M, Schmidt K, Fritz T, et al. The lowest energy Frenkel and charge-transfer excitons in quasi-one-dimensional structures: Application to MePTCDI and PTCDA crystals [J]. Chem Phys, 2000, 258(1): 73-96.
|
[16] |
Suen S C, Whang W T, Hou F J, et al. Growth enhancement and field emission characteristics of one-dimensional 3,4,9,10-perylenetetracarboxylic dianhydride nanostructures on pillared titanium substrate [J]. Org Electron, 2007, 8(5): 505-512.
|
[17] |
Sladek K, Winden A, Wirths S, et al. Comparison of InAs nanowire conductivity: Influence of growth method and structure [J]. Phys Status Solidi C, 2012, 9(2): 230-234.
|
[18] |
Li C, Fang G J, Fu Q, et al. Effect of substrate temperature on the growth and photoluminescence properties of vertically aligned ZnO nanostructures [J]. J Cryst Growth, 2006, 292(1): 19-25.
|
[19] |
Ding Shulong. Synthesis of one dimensional ZnO nanostructures [D]. Xiangtan:Xiangtan University, 2005.丁书龙. ZnO一维纳米材料的制备 [D]. 湘潭:湘潭大学, 2005.
|
[20] |
Han Yuyan, Cao Liang, Xu Faqiang, et al. Preparation and investigation on the formation mechanisms of organic single crystal nanostructures of PTCDA[J]. Acta Physica Sinica, 2012, 61: 078103. 韩玉岩,曹亮,徐法强,等. 苝四甲酸二酐有机单晶纳米结构的制备及形成机理的研究[J].物理学报,2012,61:078103.
|
[21] |
Dubrovskii V G, Sibirev N V, Cirlin G E, et al. Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP, and GaAs nanowires [J]. Phys Rev B, 2009, 79(20): 205316.
|
[22] |
Ferguson A J, Jones T S. Photophysics of PTCDA and Me-PTCDI thin films: Effects of growth temperature [J]. J Phys Chem B, 2006, 110(13): 6 891-6 898.
|
[23] |
Mobus M, Karl N. The growth of organic thin-films on silicon substrates studied by X-ray reflectometry [J]. Thin Solid Films, 1992, 215(2): 213-217.
|
[24] |
Mobus M, Karl N. Structure of perylene-tetracarboxylic-dianhydride thin-films on alkali-halide crystal substrates [J]. J Cryst Growth, 1992, 116: 495-504.
|
[25] |
Bulovic V, Burrows P E, Forrest S R, et al. Study of localized and extended excitons in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA).1. Spectroscopic properties of thin films and solutions [J]. Chem Phys, 1996, 210(1-2): 1-12.
|
[26] |
Heutz S, Ferguson A J, Rumbles G, et al. Morphology, structure and photophysics of thin films of perylene-3,4,9,10-tetracarboxylic dianhydride [J]. Org Electron, 2002, 3(3-4): 119-127.
|
[27] |
Kwong C Y, Djurisic A B, Roy V L, et al. Influence of the substrate temperature to the performance of tris (8-hydroxyquinoline) aluminum based organic light emitting diodes [J]. Thin Solid Films, 2004, 458(1-2): 281-286.
|
[28] |
Brinkmann M, Biscarini F, Taliani C, et al. Growth of mesoscopic correlated droplet patterns by high-vacuum sublimation [J]. Phys Rev B, 2000, 61(24): 16 339-16 342.
|
[29] |
Higginson K A, Zhang X M, Papadimitrakopoulos F. Thermal and morphological effects on the hydrolytic stability of aluminum tris(8-hydroxyquinoline) (Alq3) [J]. Chem Mater, 1998, 10(4): 1 017-1 020.
|
[1] |
Xiao J C, Yang B, Wong J I, et al. Synthesis, characterization, self-assembly, and physical properties of 11-methylbenzo[d]pyreno[4,5-b]furan [J]. Organic Letters, 2011, 13(12): 3 004-3 007.
|
[2] |
Byon H R, Kim S, Choi H C. Label-free biomolecular detection using carbon nanotube field effect transistors [J]. Nano, 2008, 3(6): 415-431.
|
[3] |
Reese C, Bao Z N. Organic single-crystal field-effect transistors [J]. Mater Today, 2007, 10(3): 20-27.
|
[4] |
Huang S, Efstathiadis H, Haldar P. Fabrication of nanorod arrays for organic solar cell applications [J]. Materials for Photovoltaics, 2005, 836: 49-53.
|
[5] |
Zhao Y S, Zhan P, Kim J, et al. Patterned growth of vertically aligned organic nanowire waveguide arrays [J]. Acs Nano, 2010, 4(3): 1 630-1 636.
|
[6] |
Peng A D, Xiao D B, Ma Y, et al. Tunable emission from doped 1,3,5-triphenyl-2-pyrazoline organic nanoparticles [J]. Adv Mater, 2005, 17(17): 2 070-2 077.
|
[7] |
Zhao Y S, Wu J S, Huang J X. Vertical organic nanowire arrays: Controlled synthesis and chemical sensors [J]. J Am Chem Soc, 2009, 131(9): 3 158-3 159.
|
[8] |
An B K, Kwon S K, Jung S D, et al. Enhanced emission and its switching in fluorescent organic nanoparticles [J]. J Am Chem Soc, 2002, 124(48): 14 410-14 415.
|
[9] |
Tian Y, He Q, Tao C, et al. Fabrication of fluorescent nanotubes basel on layer-by-layer assembly via covalent bond [J]. Langmuir, 2006, 22(1): 360-362.
|
[10] |
Minder N A, Ono S, Chen Z H, et al. Band-like electron transport in organic transistors and implication of the molecular structure for performance optimization [J]. Adv Mater, 2012, 24(4): 503-508.
|
[11] |
Kim D H, Lee D Y, Lee H S, et al. High-mobility organic transistors based on single-crystalline microribbons of triisopropylisilylethynl pentacene via solution-phase self-assembly [J]. Adv Mater, 2007, 19(5): 678-682.
|
[12] |
Yang F, Forrest S R. Photocurrent generation in nanostructured organic solar cells [J]. Acs Nano, 2008, 2(5): 1 022-1 032.
|
[13] |
Ogawa T, Kuwamoto K, Isoda S, et al. 3,4: 9,10-perylenetetracarboxylic dianhydride (PTCDA) by electron crystallography [J]. Acta Crystallogr B, 1999, 55: 123-130.
|
[14] |
Bulovic V, Forrest S R. Study of localized and extended excitons in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA).2. Photocurrent response at low electric fields [J]. Chem Phys, 1996, 210(1-2): 13-25.
|
[15] |
Hoffmann M, Schmidt K, Fritz T, et al. The lowest energy Frenkel and charge-transfer excitons in quasi-one-dimensional structures: Application to MePTCDI and PTCDA crystals [J]. Chem Phys, 2000, 258(1): 73-96.
|
[16] |
Suen S C, Whang W T, Hou F J, et al. Growth enhancement and field emission characteristics of one-dimensional 3,4,9,10-perylenetetracarboxylic dianhydride nanostructures on pillared titanium substrate [J]. Org Electron, 2007, 8(5): 505-512.
|
[17] |
Sladek K, Winden A, Wirths S, et al. Comparison of InAs nanowire conductivity: Influence of growth method and structure [J]. Phys Status Solidi C, 2012, 9(2): 230-234.
|
[18] |
Li C, Fang G J, Fu Q, et al. Effect of substrate temperature on the growth and photoluminescence properties of vertically aligned ZnO nanostructures [J]. J Cryst Growth, 2006, 292(1): 19-25.
|
[19] |
Ding Shulong. Synthesis of one dimensional ZnO nanostructures [D]. Xiangtan:Xiangtan University, 2005.丁书龙. ZnO一维纳米材料的制备 [D]. 湘潭:湘潭大学, 2005.
|
[20] |
Han Yuyan, Cao Liang, Xu Faqiang, et al. Preparation and investigation on the formation mechanisms of organic single crystal nanostructures of PTCDA[J]. Acta Physica Sinica, 2012, 61: 078103. 韩玉岩,曹亮,徐法强,等. 苝四甲酸二酐有机单晶纳米结构的制备及形成机理的研究[J].物理学报,2012,61:078103.
|
[21] |
Dubrovskii V G, Sibirev N V, Cirlin G E, et al. Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP, and GaAs nanowires [J]. Phys Rev B, 2009, 79(20): 205316.
|
[22] |
Ferguson A J, Jones T S. Photophysics of PTCDA and Me-PTCDI thin films: Effects of growth temperature [J]. J Phys Chem B, 2006, 110(13): 6 891-6 898.
|
[23] |
Mobus M, Karl N. The growth of organic thin-films on silicon substrates studied by X-ray reflectometry [J]. Thin Solid Films, 1992, 215(2): 213-217.
|
[24] |
Mobus M, Karl N. Structure of perylene-tetracarboxylic-dianhydride thin-films on alkali-halide crystal substrates [J]. J Cryst Growth, 1992, 116: 495-504.
|
[25] |
Bulovic V, Burrows P E, Forrest S R, et al. Study of localized and extended excitons in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA).1. Spectroscopic properties of thin films and solutions [J]. Chem Phys, 1996, 210(1-2): 1-12.
|
[26] |
Heutz S, Ferguson A J, Rumbles G, et al. Morphology, structure and photophysics of thin films of perylene-3,4,9,10-tetracarboxylic dianhydride [J]. Org Electron, 2002, 3(3-4): 119-127.
|
[27] |
Kwong C Y, Djurisic A B, Roy V L, et al. Influence of the substrate temperature to the performance of tris (8-hydroxyquinoline) aluminum based organic light emitting diodes [J]. Thin Solid Films, 2004, 458(1-2): 281-286.
|
[28] |
Brinkmann M, Biscarini F, Taliani C, et al. Growth of mesoscopic correlated droplet patterns by high-vacuum sublimation [J]. Phys Rev B, 2000, 61(24): 16 339-16 342.
|
[29] |
Higginson K A, Zhang X M, Papadimitrakopoulos F. Thermal and morphological effects on the hydrolytic stability of aluminum tris(8-hydroxyquinoline) (Alq3) [J]. Chem Mater, 1998, 10(4): 1 017-1 020.
|