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Abstract: When domains, which represent underlying data distributions, differ between training and test datasets, tradi-
tional deep neural networks suffer from a substantial drop in their performance. Domain generalization methods aim to
boost generalizability on an unseen target domain by using only training data from source domains. Mainstream domain
generalization algorithms usually make modifications on some popular feature extraction networks such as ResNet, or add
more complex parameter modules after the feature extraction networks. Popular feature extraction networks are usually
well pre-trained on large-scale datasets, so they have strong feature extraction abilities, while modifications can weaken
such abilities. Adding more complex parameter modules results in a deeper network and is much more computationally de-
manding. In this paper, we propose a novel feature transfer model based on popular feature extraction networks in domain
generalization, without making any changes or adding any module. The generalizability of this feature transfer model is
boosted by incorporating a contrastive loss and a data augmentation strategy (i.e., Mixup), and a new sample selection
strategy is proposed to coordinate Mixup and contrastive loss. Experiments on the benchmarks PACS and Domainnet

demonstrate the superiority of our proposed method against conventional domain generalization methods.

Keywords: Contrastive loss; data augmentation; deep neural network; domain generalization; feature transfer
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1 Introduction

It is critical for machine learning algorithms to maintain safe
and reliable predictions that generalize well across domains.
Machine learning models are usually applied in scenarios
where the test data distribution is different from that of train-
ing data. This phenomenon has serious consequences, espe-
cially when the predictions are used for life-threatening
events such as medical diagnosis~. The distributional gap
between the training and test datasets raises the possibility
that the prediction is significantly mistaken. A domain gener-
alization algorithm aims to train a model on multiple source
domains, which has sound generalization on unseen target do-
mains. To accomplish this goal, models must be trained to
capture useful features observed commonly in source
domains.

Most domain generalization methods assume that different
domains share some “stable” features whose relationship with
the output is invariant across domains, and the goal of most
domain generalization methods is to learn such domain-in-
variant features. Domain generalization methods can be
grouped into several categories based on their techniques.
Some algorithms define novel loss functions to learn domain-
agnostic representations'”, which are applicable to a broad
range of tasks. Alternatively, in recent years, researchers have
been increasingly interested in designing deep neural net-
work (DNN) architectures to achieve similar goals'*.. These
DNN architectures usually achieve better performances on
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experimental datasets, but they usually modify popular fea-
ture extraction networks, such as ResNet, or add more com-
plex parameter modules after the popular feature extraction
network. Popular feature extraction networks are usually well
pretrained on large-scale datasets so that they have strong fea-
ture extraction abilities, and modifications could weaken such
abilities. Furthermore, adding more complex parameter mod-
ules results in a deeper network and is much more computa-
tionally demanding.

We aim to improve the widely used feature extraction net-
works from three aspects so that their outputs have a higher
prediction generalizability. On the output side, a suitable loss
function can be used to maximize the similarity of features
from the same label, so we adopt a contrastive loss and re-
define positive and negative samples in accordance with the
domain generalization problem. On the input side, specific
sampling strategies and data augmentation methods can be
used to improve the generalization ability of the original net-
works, so we implement a new Mixup'”-based sampling
strategy. On the outside of the whole network, we design a
feature transfer model for another prediction using random
domain input and feature transfer, which can independently
evaluate the generalization of output features based on a caus-
al model.

The novelties of this paper are threefold. First, our method
does not change the general feature extraction network and
does not add any modules, so it can be easily extended to any
other network. Second, we propose a new sample selection
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strategy to coordinate Mixup and contrastive loss, which ef-
fectively improves the performance of our method. Third, our
method significantly outperforms existing methods in applic-
ations to two benchmark datasets.

2 Related Work

2.1 Domain generalization

Algorithms for domain generalization usually require a vari-
ety of labeled training source domains. However, target data
with a domain different from those of training data are not
available during training for domain generalization
methods!"""”. Many early domain generalization methods"*"!
borrowed the idea of distribution alignment from domain ad-
aption'*'" to reduce the distributional gap between multiple
training sources. Some recent domain generalization methods
consider generating extra synthetic images given the multiple
source domains so that test data whose distribution is usually
close to that of the training data are “in-distribution” with the
training data"*. Some methods decompose network paramet-
ers into domain-specific and domain-invariant parts during
training, while only domain-invariant parameters are used for
predictions in test stage'””. For instance, Peng et al.*" de-
veloped a low-rank parameterized convolutional neural net-
work (CNN) model where each layer of the network is de-
composed into “common” and “specific” components. Sever-
al normalization and meta-learning strategies are also con-
sidered for domain generalization® >,

11,12

2.2 Contrastive loss

Contrastive loss is the crucial loss function in contrastive
learning™ =" which has superior performance in the context of
self-supervised learning with applications to pretrain tasks
and unsupervised learning problems. Most existing works on
contrastive learning have focused on unsupervised al-
gorithms, while this paper addresses domain generalization
problems with the intent of discovering feature invariants.
Mitrovic et al.”” proposed a contrastive learning technique by

Feature extractor

imposing a specific prediction regularizer across augmenta-
tions to enhance in-class consistency. We extend this con-
trastive loss to our proposed method, albeit to an entirely dif-
ferent interpretation and application.

2.3 Mixup

Mixup"” is a simple learning technique used to reduce un-
wanted oscillations due to some behaviors such as memoriza-
tion and sensitivity arising from adversarial samples. Mixup
trains a neural network on convex combinations of instance-
label pairs through a regularization that favors straightfor-
ward linear behavior in-between training samples. Further-
more, Mixup can lessen the need to remember imperfect la-
bels and improve the robustness with respect to adversarial
samples.

3 Materials and methods

3.1 Problem formulation

The “Domain” could be considered as a particular type of
data distribution. The key of popular models is the condition-
al distribution P(Y]X), where X stands for the input and Y
stands for the desired outcome. In the presence of multiple
domains, the conditional distribution usually depends on do-
mains and can be denoted by P,(Y|X), where d stands for the
domain.

For domain generalization problems, we consider D source
domains D ={D,}>,, where the dth domain D, consists of
N, training pairs {(x,;,y.)}L,, with x,; being the ith input in
D, and y,; €{1,2,...,n} being the label of x,,;. Here n, is the
total number of classes. The goal of the domain generaliza-
tion method is to learn a model from multiple labeled source
domains that generalize well to an unseen target domain D;.
In this paper, we focus on image classification tasks.

Our method is graphically illustrated in Fig. 1. In our meth-
od, a contrastive loss is helpful in extracting invariant inform-
ation from images with the aid of a novel Mixup strategy. A
feature transfer model is designed to improve and verify the

Contrastive loss

«— Label

C

? ”?

S
Random__ |
domain

Domain embedding

Classifier

Feature transfer

Classification loss

— Classification loss

— Classification loss
Trained Classifier

Fig. 1. Illustration of our proposed method.

0404-2

DOI: 10.52396/JUSTC-2023-0010
JUSTC, 2024, 54(4): 0404


https://doi.org/10.52396/JUSTC-2023-0010
https://doi.org/10.52396/JUSTC-2023-0010
https://doi.org/10.52396/JUSTC-2023-0010
https://doi.org/10.52396/JUSTC-2023-0010
https://doi.org/10.52396/JUSTC-2023-0010

Zzsrg "

Wang et al.

generalizability of retrieved features.

Now we describe our method in detail. In the first stage, we
encode each training sample using a feature-extracting en-
coder F' (CNN in this paper). Specifically, we first apply the
feature extractor F to transform an image x into a latent vec-
tor f(x). In the second stage, we utilize the feature f(x) to
calculate four losses (on two sides), whose linear combina-
tion is the final optimization objective for model training. On
one side, the feature f(x) is sent to a contrastive loss L, and
it is also sent to a label classifier to obtain a label classifica-
tion loss L, defined as

Ly == ¥ log(§), (1)
i=1

where 7, is the total number of classes, (y,,--,y,.) is the one-
hot vector of label y with y =0 for i#y and y' =1 for i =y,
and ¥ is the output probability for the ith class by the classifi-
er. On the other side, f(x) is first combined with a domain
feature e(d) encoded from a random input domain d through
a domain embedding encoder E. Then, the combined feature
(f(x),e(d)) is sent to a feature transfer model 7 to obtain a
new feature #(x,d). Next, to identify label and domain, the
new feature #(x,d) is input into a trained classifier, producing
a label classification loss L, and a domain classification loss
L. The specific formulations of L., and L,; will be de-
scribed in Section 3.4.

3.2 Contrastive loss

We aim to generate domain-invariant features. Such features
should be invariant to domains and have high similarity
scores for those samples with the same label. To this end, we
adopt a contrastive loss function with inputs including posit-
ive and negative samples in addition to the original inputs,
where positive and negative samples are generated as follows.
For any sample x, we draw m, positive samples with labels
the same as that of x and domains randomly selected from
domains other than that of x. Similarly, m, negative samples
have domains the same as x and labels randomly selected
from labels other than that of x.

The contrastive loss is described as follows. Let
{x{,---,x; } and {x7,---,x, } be positive samples and negat-
ive samples, respectively, which are drawn from the training
data and are correlated with the original inputs x's. The con-
trastive loss is defined as

Table 1. A brief illustration of five sampling strategies

my

§ ef(xﬂf(x,*)/ \a

L= _10g m - > (2)

my
T fiyt T —
§ /W )/ N + § /W )N

i=1 i=1

where £ is the dimension of f(x).
3.3 A Mixup based sampling strategy

Mixup is a commonly used technique for data augmentation
by constructing virtual training samples as follows:

{xn = x, + (1= Dx,,

- 3)
$o= Ay +(1 =Dy,

where (x;,y;) and (x,,y,) are two samples (first original
sample and second original sample hereafter) drawn ran-
domly from our training data, with x, and x, being raw input
vectors and y, and y, being one-hot label encodings, and
A€[0,1] is used to weight the two samples. With the virtual
training samples, we need to generate their corresponding
positive and negative samples.

Denote the domains of x, and x, by d, and d,, respect-
ively, the label and domain of any positive sample by y, and
d,, respectively, and the label and domain of any negative
sample by y, and d,, respectively. In what follows, we
present our sampling strategies under five different circum-
stances in what follows (refer to Table | for a summary),
where a domain/label is randomly selected from a candidate
domain/label set for each circumstance.

(S1) If we do not use Mixup, then we choose those samples
with the same label y, =y, but a different domain d, # d, as
positive samples and those samples with a different label
¥, #Y, and the same domain d, = d, as negative samples.

(S2) If we choose a sample with the same label y, =y, and
the same domain d, = d, as the second original sample, then
we choose two samples (labels y, =y, =y;; domains
d, =d, #d,) to mix up a positive sample and two samples
(labels y,, =y,, #y,; domains d, =d,, =d,) to mix up a neg-
ative sample.

(S3) If we choose a sample with different label y, # y, and
the same domain d, =d, as the second original sample, then
we choose two samples (labels (v,,.,,) = (1,)2) or (V2.31);
domains d,, =d,, #d,) to mix up a positive sample and two
samples (labels y,,,y,, # ¥i,Y,; domains d, =d,, =d,) to mix
up a negative sample.

S1 S2 S3 S4 S5
2 None Y2 =y N #y Y2 =n Y2 £ )1
da None dr =d; dy =d) dr #d, dy # di
Yp Yp =21 Yp1 =Ypy =1 Op1>Ypy) = 1,y2) or (y2,y1) Yp1 =Ypy =1 Opys¥py) = O1,32) or (72,31)
d, d, #d; dy, =dp, #d, dp, =dp, #d, dp,.dp, #d1,dp dp,.dp, #dy,dy
Yn Yn # Y1 Yy =Yy #Y1 YnisYny #Y1,)2 Yng =Ynp Y1 Ynp>Yny Y12
dy d, # d dyy =dn, = d) dn, =dp, =d; (dny»dny) = (d1,d>) or (da,d1) (dny»dny) = (d1,d>) ot (da,d1)

S1,---,85: five sampling strategies described in Section 3.3; y; and d;: the label and domain for the jth sample (j=1,2); y, and d,: the label and

domain for the positive sample; y, and d,, : the label and domain for the negative sample.
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(S4) If we choose a sample with the same label y, =y, and
different domain d, # d, as the second original sample, then
we choose two samples (label y, =y, =y,; domains
d,.d, #d,,d,) to mix up a positive sample and we choose
two samples (label y, =y, #y,; domains (d,.d,,) =(d,,d,)
or (d,,d,)) to mix up a negative sample.

(S5) If we choose a sample with different label y, # y, and
different domain d, # d, as the original second sample, then
we choose two samples (label (,,,y,,) = (1,¥2) or (,,¥,); do-
mains d,,.d,, #d,,d,) to mix up a positive sample and two
samples (labels y,,,y,, # (v1,¥,); domains(d,,.d,,) = (d,,d,) or
(d,,d,))) to mix up a negative sample.

3.4 Feature transfer

In this subsection, we aim to extract a sample feature that is
unrelated to the domain and related to the label. Then, we can
combine such a feature with a new artificially generated do-
main feature to obtain a new feature, such that the corres-
ponding original label and the new domain can be easily pre-
dicted.

The causal model shown in Fig. 2 serves as the foundation
for our feature transfer model. We assume that the input x is
dependent on the label variable y, domain variable d, and
hidden variable z, and variables y, d, z are mutually inde-
pendent. Let f;, f;, f., and f, be features corresponding to y,
d, z, and x, respectively. We wish to use CNN to extract do-
main-invariant feature f(x), which is independent of d given
y and z (i.e., f(x)Ld|y,z). Let 4 be a new domain different
from d, and f; be a feature corresponding to J. In our feature
transfer model, we need to combine the domain-invariant fea-
ture f(x) with the new domain feature f;. Let f.; be a new

feature generated by f(x) and f;, then the label y and domain
d can be predicted through the new feature f,;. Following
this idea, we apply the domain embedding encoder E to trans-
form a random domain input d to the domain feature e(d). In
practice, each domain is assigned an abstract number, such as
0, 1, and 2. Each number corresponds to a vector, which rep-
resents the domain's feature and is learned during the training
process. The random input is a random integer sampled from
0,1,---,n,—1, where n, is the total number of domains. The
domain embedding encoder is a map mapping the integer to
the corresponding vector. A concatenation (f(x):e(d)) is
generated by concatenating f(x) and e(d), and the feature
transfer 7 is used to transfer (f(x): e(d)) into a new feature
t(x,d). Then, the new feature #(x,d) is sent to a trained classi-
fier to obtain a classification result, with which we can calcu-
late a label classification loss L., and a domain classification
loss L. Ly, 1s a cross-entropy loss:

N

Loo =~ y'log(§) )
i=1
where 7, is the total number of classes, (y,,...,y,.) is the one-
hot vector of label y with y ¥ =0 for i#y and y' =1 for
i=y,and ¥ is the output probability for i-th class from the
classifier. Similarly, L, is a cross-entropy loss:

Los =- ) d'log(d) 5)
i=1

where n, is the total number of domains, (d,,...,d,,) is the one-
hot vector of domain d with d' =0 for i#d and d'=1 for
i=d, J is the output probability for ith domain from the

’
’ N
L4 \

4 \
s
ré \\

Fig. 2. A causal model underlying our proposed method. y: label variable; f,: label feature; d: domain variable; f;: domain feature; z: hidden variable; f.:
hidden feature; x: sample; f,: sample feature; f(x): domain invariable feature (extracted from CNN); d: new domain variable; f;: new domain feature;
f.a: new feature generated by f(x) and f;. Solid arrow: causal relationship; dotted arrow: prediction.
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classifier.
3.5 Total loss

The total loss is

Lmlal = Lcon + aLclsl +ﬁ(l‘0152 + Lcls})!

where L.y, Ly, Lao, and Ly are defined in Egs. (2), (1), (4),
and (5), respectively, and @ and B are hyper-parameters. Only
the contrastive loss, Mixup sampling strategy, and feature
transfer model are used during the training and validating
stages. In the testing process and applications to real datasets,
only the well-trained feature extracting network and the clas-
sifier are used to predict labels.

4 Results

4.1 Datasets

We evaluated the performance of the proposed method
through the application to the benchmarks PACSF" and
DomainNet”". PACS is a widely used domain generalization
benchmark consisting of a total of 9991 samples from four
domains (i.e., Art Painting, Cartoon, Photo, and Sketch). Each
domain includes samples from seven different categories (i.e.,
dog, elephant, giraffe, guitar, horse, house, and person). Do-
mainNet is a large-scale dataset widely used in multi-source
domain adaptation and domain generalization, which consists
of 0.6 million images categorized into 345 classes and distrib-
uted across six domains (i.e., Clipart, Infograph, Quickdraw,
Painting, Real, and Sketch).

4.2 Leave-one-domain-out test strategy

In domain generalization tasks, the leave-one-domain-out
strategy is widely used to test the performance of a classifica-
tion model. The validation schemes are usually implemented
as follows:

(1) Choose one domain as the target domain and the test
dataset consists of all samples with this domain, while the
other domains are so-called source domains, and all samples
with source domains are divided into a training set and a val-
idation set.

(II') Train the model on the training set and choose the
model with the best performance on the validation set.

(IIT) Test the performance of the model on the target do-
main and record the accuracy of the label classification.

(IV) Treat each domain as a target domain one by one and
calculate the average of the accuracies.

Table 2. Prediction accuracies for the PACS dataset

4.3 Implementation details

Following the backbone setting of Bai et al."¥, we used Res-
Netl18 and ResNet50 pre-trained on ImageNet as the CNN
backbone of our model. The feature used in our model was a
concatenation of avgpool, maxpool, and minpool output from
the backbone. Domain embedding we adopted was the em-
bedding layer with the input dimension being the source do-
main number and the output dimension being 256. For Res-
Netl8, the feature transfer module was chosen to be (MLP
(1792786), RELU, MLP (7861572)). For ResNet50, the fea-
ture transfer module was chosen to be (MLP (6400512),
RELU, MLP (5125144)). We randomly chose a strategy from
five Mixup sample strategies mentioned in Section 3.3. Dur-
ing training our model, Adam was used as an optimizer with
an initial learning rate of 0.0001, the batch size was set to 60,
and the total epoch number was chosen to be 20. The learn-
ing rate further decayed to 0.00001 in the last 10 epochs.

4.4 Baselines

We compared our method with nine existing domain general-
ization baselines. ( 1) JiGen": a Jigsaw-puzzle-based gener-
alization method, which focuses on the unsupervised task to
solve jigsaw puzzles. (ii) MMLD®: a method iteratively di-
viding samples into latent domains via clustering and training
the domain-invariant feature extractor shared among the di-
vided latent domains via adversarial learning. (iii) L2A-
OT!": a method synthesizing extra data from pseudo-novel
domains to augment the source domains. (iv) MatchDG®": a
matching-based algorithm through data augmentation when
base objects are observed and objective approximation other-
wise. (V) SagNet"”!: a method forcing the used model to
focus more on image contents shared across domains with im-
age styles ignored. (vi) DDAIG": a domain generalization
method based on a domain transformation network. (Vi)
Vanilla: a simple method based on a plain classification mod-
el trained on all available source domains using all annota-
tions. (vii) MetaReg"”: a method using a regularization func-
tion in a Learning to Learn (or meta-learning) framework.
(ix) Multi-Headed and DMG"": a method learning domain-
specific masks for generalization on different domains.

4.5 Results

Analysis results for the PACS dataset are presented in Table 2.
Our method obtained the highest score on average, and the
score of our method was comparable to the highest score in
each domain. JiGen” performs poorer than ours, which
might be due to the fact that JiGen does not handle domain
invariance via contrastive loss, though both methods do not

Method Photo Sketch Cartoon Art Average
MMLD 96.09 72.29 77.16 81.28 81.71
JiGen 96.03 7135 75.25 79.42 80.51
L2A-OT 96.20 73.60 78.20 83.30 82.83
DDAIG 95.30 74.70 78.10 84.20 83.10
MatchDG 95.93 77.11 80.03 79.77 83.21
Ours 96.04 74.98 79.97 83.44 83.61
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alter the constituents of ResNet18 or add any further modules.

Analysis results for the Domainnet dataset are presented in
Table 3. With a relatively modest network size (ResNetl8),
our method achieved the highest score on average, and the
score of our method ranks first for half of the test domains.
With a pretty wide network size (ResNet50), our method also
obtained the best average score. Although our method did not
achieve the highest score in the majority of domains, the dif-
ferences between our scores and the highest score were not
large.

In summary, our method outperformed the considered
methods in the applications to benchmark datasets with a
variety of network sizes and dataset sizes.

4.6 Ablation study

We conducted an ablation study to examine the impact of
various factors on the performance of our method with Res-
Netl8 through the applications to using the PACS dataset.
We considered three variations of our method: ( 1) our meth-
od without contrastive loss, which removes the contrastive
loss but uses the feature transfer model; (ii) our method
without Mixup, which removes Mixup together with the
Mixup sampling strategy but still uses the contrastive loss;
(iii) our method without feature transfer, which removes the
feature transfer model together with label classification loss
and domain classification loss as parts of the feature transfer
model and still uses the contrastive loss and the Mixup
sampling strategy; (iv) our method without loss L., which
removes the label classification loss (in Eq. (4)) in the feature
transfer model; (V) our method without loss L., which re-
moves the domain classification loss (in Eq. (5)) in the fea-
ture transfer model.

The prediction accuracies of the ablation study are presen-
ted in Table 4. We have the following observations. First, re-
moving contrastive loss from our method resulted in a sub-
stantial drop in accuracy. Second, removing Mixup or feature
transfer model from our method resulted in a moderate drop
in accuracy. Third, removing either the label classification
loss or the domain classification loss in the feature transfer

Table 3. Prediction accuracies for the Domainnet dataset

model is equivalent to removing the entire feature transfer
model. This is because removing the label classification loss
will cause the feature transfer model to ignore the features ex-
tracted from the CNN and instead focus on the random do-
main classification, rendering the feature transfer model inef-
fective. Similarly, removing the domain classification loss
will cause the feature transfer model to disregard the domain
features, keeping the features extracted from the CNN un-
changed and thus rendering the feature transfer model inef-
fective. In other words, the contrastive loss made a major con-
tribution to the classification performance of our method, and
incorporating the Mixup strategy and the feature transfer
model further improved the classification performance.

4.7 Further analysis

To demonstrate the functionality of the feature transfer
model, we tracked the transferred label accuracy and trans-
ferred domain accuracy on the model with the highest label
accuracy on validation datasets. The corresponding results are
presented in Table 5. The transferred label accuracies were
very close to the label accuracies and the transferred domain
accuracies were also very high. This indicated that the fea-
ture generated from the feature transfer model can be effect-
ively recognized by the trained classifier, demonstrating that
the feature transfer model can successfully transfer the fea-
ture into a new domain without losing the label information.

5 Conclusions

We present a novel and powerful domain generalization
method based on feature transfer and a Mixup sampling
strategy. Notably, our method does not make any changes to
the popular feature extraction network or add any modules
after the network. We introduce a contrastive loss in the
method and propose a Mixup sampling strategy to cooperate
with it. We also propose a novel feature transfer model to
make the extracted feature to be invariant across domains.
The applications to experiments on two standard benchmarks
demonstrated that our proposed method outperformed several

Method Clp Inf Pnt Qdr Rel Skt Average
ResNet18
Vanilla 56.5 18.4 453 12.4 57.9 38.8 38.2
Multi-Headed 55.4 17.5 40.8 11.2 52.9 38.6 36.1
MetaReg 53.6 21.0 45.2 10.6 58.4 423 38.5
DMG 60.0 18.7 44.5 14.1 54.7 41.7 39.0
Ours 58.4 20.3 45.5 13.1 58.8 4.5 39.8
ResNet50
Vanilla 64.0 23.6 51 13.1 64.4 47.7 44.0
Multi-Headed 61.7 21.2 46.8 13.8 58.4 45.4 41.2
MetaReg 59.7 25.5 50.1 11.5 64.5 50.0 43.6
DMG 65.2 22.1 50.0 15.6 59.6 49 43.6
Ours 66.2 232 50.0 15.3 63.2 49.5 44.6

Clp: Clipart, Inf: Infograph, Pnt: Painting, Qdr: Quickdraw, Rel: Real, and Skt: Sketch.
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Table 4. Prediction accuracies for the ablation study using the PACS dataset
Method Photo Sketch Cartoon Art Average

Ours w/o contrastive loss 95.19 67.86 74.74 77.85 78.91

Ours w/o Mixup 95.61 73.08 78.19 81.77 82.16

Ours w/o feature transfer 95.75 72.81 77.79 82.09 82.13

Ours w/o loss Leis2 95.59 72.89 76.91 82.17 81.90

Ours w/o loss L¢is3 95.51 73.25 77.56 82.52 82.21

Ours 96.04 74.98 79.97 83.44 83.61
Table 5. Original and transferred accuracies for the PACS dataset

Photo Sketch Cartoon Art

Label accuracy 96.01 97.15 97.78 97.58

Transferred label accuracy 95.93 97.30 97.53 97.77

Transferred domain accuracy 95.20 95.45 95.34 96.01

considered competitors.
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