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Public summary

m Replication and erasure code (EC) are used to tolerate faults and have different time and space costs. To obtain the best
of both worlds, we support hybrid fault tolerance and dynamic redundancy transition between both schemes.

m EC-oriented replication is introduced to improve the I/O efficiency of the redundancy transition.

m Local data could be leveraged to serve coreleased requests while avoiding concurrent consistency problems.
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Abstract: An in-memory storage system provides submillisecond latency and improves the concurrency of user applica-
tions by caching data into memory from external storage. Fault tolerance of in-memory storage systems is essential, as the
loss of cached data requires access to data from external storage, which evidently increases the response latency. Typically,
replication and erasure code (EC) are two fault-tolerant schemes that pose different trade-offs between access performance
and storage usage. To help make the best performance and space trade-off, we design ElasticMem, a hybrid fault-tolerant
distributed in-memory storage system that supports elastic redundancy transition to dynamically change the fault-tolerant
scheme. ElasticMem exploits a novel EC-oriented replication (EOR) that carefully designs the data placement of replica-
tion according to the future data layout of EC to enhance the I/O efficiency of redundancy transition. ElasticMem solves
the consistency problem caused by concurrent data accesses via a lightweight table-based scheme combined with data by-
passing. It detects corelated read and write requests and serves subsequent read requests with local data. We implement a
prototype that realizes ElasticMem based on Memcached. Experiments show that ElasticMem remarkably reduces the time
of redundancy transition, the overall latency of corelated concurrent data accesses, and the latency of single data access

among them.
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1 Introduction

In-memory storage is becoming increasingly popular as data-
driven business is more extensive!. Facing emerging data-
intensive applications, disk-based schemes”” struggle to
serve the massive amount of data access requests with low
latency and high concurrency and become the bottleneck of
data access flow. As a result, memory-based solutions* are
adopted to alleviate the access load of external storage. In
particular, in-memory storage” is a generic middleware that
lies between user applications and external storage. An in-
memory storage system caches data from external storage to
provide low-latency and high-concurrency data access. There-
fore, in-memory storage systems have been widely deployed
in production™”.

Fault tolerance is a vital promise of in-memory storage.
The volatile nature of memory and increasing scale of in-
memory systems lead to prevalent failures. In case of failures,
the system accesses external storage directly and reloads data
into memory, which severely prolongs the access latency".
To provide fault tolerance, data redundancy is introduced.
Typically, there are two common redundancy schemes,
namely, replication'"'” and erasure code (EC)"*'. Replica-
tion replicates a data object m+1 times and distributes them
into m+1 different nodes to tolerate m node failures.
However, replication incurs m times more memory usage. EC
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splits an object into k data blocks, encodes the data blocks
into m additional blocks called parity blocks, and distributes
the k+m data and parity blocks to k+m different nodes to tol-
erate m node failures. The k+m blocks form a stripe. Com-
pared to replication, EC needs only m/k more memory space
with the same fault-tolerant ability. However, EC incurs ex-
tra CPU overhead for encoding, which inevitably degrades
the user write performance.

The performance requirement of in-memory storage and
the limited memory resources call for a proper balance
between access performance and memory space. Storing all
data with replication results in high overhead of the precious
memory space, while storing all data with EC degrades ac-
cess performance. Therefore, it is reasonable to employ a hy-
brid fault-tolerant scheme that incorporates both replication
and EC to help reach the best trade-off between performance
and memory usage. The system assigns replication and EC to
different data types. When the user demands change, the sys-
tem conducts a redundancy transition to change the redund-
ancy scheme of an object from replication to EC, or vice
versa. For example, as in-memory caching exhibits skewed
popularity!”, small-sized or hot data could be stored with rep-
lication, while big-sized or cold data could be stored with EC.
When the hot data turn cold or the cold data turn hot, the sys-
tem transitions the redundancy scheme between replication
and EC. In this manner, the system provides both high access
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performance for hot data and high storage efficiency for cold
data.

Many studies have focused on the redundancy transition
between EC schemes with different parameters.
StripeMerge®! changes from EC(k,m) to EC(2k,m) and per-
forms 10-efficient unilateral redundancy transition by care-
fully choosing two EC(k,m) stripes and merging them into
EC(2k,m). ERSP supports the change from EC(k,m) to
EC(k’,m). It minimizes the transition I/Os by an innovative
codesign of encoding matrix construction and data placement
design. Cocytus™! applies three-way replication to metadata
of objects and EC (k = 3, m = 2) to values of objects. Here,
we emphasize that all these studies do not combine replica-
tion and EC to effectively store in-memory data according to
data types. In addition, they do not consider the consistency
issue caused by concurrent data accesses in distributed in-
memory storage. There are still other studies adopting both
replication and EC, but they are either based on file systems
or consider cross-rack scenarios® .

In this paper, we present ElasticMem, a distributed in-
memory storage system combining both replication and EC
for hybrid fault tolerance and supporting elastic redundancy
transition between replication and EC. ElasticMem addresses
the 1/O efficiency and consistency issue during redundancy
transition. The main contributions include the following:

(1) We design ElasticMem, a distributed in-memory stor-
age system that incorporates both replication and EC for hy-
brid fault tolerance. ElasticMem assigns replication and EC to
different data types and adjusts the redundancy scheme ac-
cording to user demand changes.

(II') ElasticMem adopts EC-oriented Replication (EOR), a
new replication scheme that determines the data placement of
replication according to the future data layout of EC. EOR
greatly reduces the I/Os of the redundancy transition while
guaranteeing the access performance of replication.

(IIT) ElasticMem addresses the consistency issue triggered
by distributed data accesses by a table-based scheme com-
bined with data bypassing. It detects concurrent accesses to
the same data and serves the subsequent requests with local
data instead of sending redundant requests to the nodes.

(IV) We implemented ElasticMem as a prototype atop
Memcached. Our testbed experiments show that ElasticMem
reduces the transition time by up to 35% compared to naive
transition. In addition, it remarkably reduces the overall
latency of corelated requests and reduces the latency of a
single request to at most 6 ps.

2 Background

We present the background of the distributed in-memory stor-
age system. In particular, we introduce the distributed in-
memory KV store, Memcached, based on which we will de-
velop our storage prototype. We will introduce the replica-
tion mechanism and elaborate the EC mechanism on Mem-
cached and show the process of redundancy transition
between replication and EC.

2.1 Architecture of the distributed in-memory storage
system

Distributed in-memory storage systems such as Memcached"”
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are composed of a server side and client side (Fig. 1). The
server side contains several servers called nodes, which store
memory objects. The client side provides access interfaces
(e.g., get and set) to users. The client side uses a dispatcher to
determine the nodes for storing an object. For example, the
client side of Memcached leverages consistent hashing for ob-
ject distribution.

2.2 Replication in a distributed in-memory storage
system

When writing a KV pair <k,v> using replication on Mem-
cached, the client side (i.e., Libmemcached™") first applies
consistent hashing on the key and derives a main node for
storing the object. It then stores some replicas of the objects
in successive nodes along the clockwise direction. For ex-
ample, in Fig. 1, the client side assigns node;, node,, and
node, for storing an object using three-way replication.

2.3 Erasure coding in a distributed in-memory storage
system

When storing an object using EC, Memcached first splits an
object evenly into k data blocks and then encodes the data
blocks into m parity blocks. The k+m blocks together are
called a stripe. Memcached also assigns a main node by hash-
ing the key. It then stores the stripe of k+m blocks in success-
ive nodes from the main node on by assigning the same keys
to all k+m blocks. Memcached chooses Reed-Solomon (RS)
code as the coding scheme of EC, which is broadly studied
by academics and industry for in-memory data and KV
Store[lh\5,](:.22,25].

For example, Fig. 1 depicts how to store a KV pair using
RS(k = 2, m = 1) in Memcached. The client side splits the
value into two data blocks v, and v;, encodes them into one
parity block v,, and assigns the same keys to form three new
KV pairs. Then, the three KV pairs are stored on nodes, node,
and node;.

We call the nodes that store data blocks and parity blocks

Server side

hash(k)=node; Client side

dispatcher

Fig. 1. Store an object with three-way replication on Memcached. One
main copy (in node;) and two replicas (in node, and node;) are stored at
the same time.
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Fig. 2. RS(k =2, m = 1) on Memcached. A KV pair is split and encoded into multiple data and parity blocks (i.e., <k, vy>, <k, v;>, and <k, v,>), which are

separately stored.

data nodes and parity nodes, respectively. In Fig. 1, node; and
node, are data nodes, while node; is a parity node. When a get
request for this KV pair is issued, two concurrent get re-
quests are sent to data nodes to retrieve v, and v,. Then, they
are merged to construct the original KV pair. However, if
node; is not available, two concurrent get requests are sent to
the data node (node,) and parity node (node,) to retrieve v,
and v,. Then, Memcached applies decoding to obtain v, and
constructs the original KV data.

2.4 Redundancy transition

When the user demands change, the system conducts a re-
dundancy transition to change the redundancy scheme

between replication and EC to achieve the tradeoff between
performance and storage overhead. Here, we show how a
naive transition policy transits an object from replication to
EC.

The client side performs three steps in naive transition: (1)
It reads an object from nodes. (ii) It performs erasure coding
to construct the stripe of data and parity blocks. (iil) It writes
the EC stripe to nodes. For example, in Fig. 3, we show how
the naive transition transitions an object from two-way replic-
ation to EC (k = 3, m = 1). The client reads the entire object,
splits and encodes it into D;, D,, D;, and P, and writes the
stripe of four blocks to four nodes.

transition D, D> D; P,

node; node, nodey

““"‘-l-_h“'
—

getR ~ ~~

>

node; node, node; nodey

- -
{;:_-r.:‘-{"' —set D|"“D3,P1

o

client

R->Di~D;=>P;

Fig. 3. Transition from two-way replication to EC (k = 3, m = 1). The naive transition process includes replica read, EC encoding, and EC block writes.
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distributed ts 4
R R old layout Istributed reqguests
,/ metadata - placement
R D, D, D, @ newlayout table controller
Fig. 4. New data layout of replicas for two-way replication, which is sim- ¢ 1 _____
ilar to EC(k = 3,m). d t Ir 5 :
rca r Write
The process from EC to replication is nearly the reverse of : cllspatcher :
the above. The client reads all the data blocks, ie., D, D,, | }  ~— 7~ } ______
and Ds in Fig. 3, constructs the original data R, and writes R |
to node; and node,. Both transitions have a similar core;
hence, we mainly focus on the elaboration of the former data bypElSS concurrency
transition. The reverse process is evaluated in our experi-
ments as well. controller

3 Challenges and motivations

3.1 Challenges

Challenge 1: Naive transition incurs heavy I/0O overhead.
Suppose the size of an object is S, and we transit it from rep-
lication to EC. The amount of I/O for replica read is S, while
that for EC block writes is (k+m)S/k. Thus, a total 10 over-
head of (2k+m)S/k (more than 2 times the size of the object) is
incurred in the naive transition. For example, in Fig. 3, the
total I/O size is 75/3. The I/O overhead will further increase
for EC with larger m/k and S.

Challenge 2: Concurrent requests may cause inconsist-
ency. While redundancy transition is being conducted, the
system needs to serve normal user requests. As shown in Fig. 3,
EC changes a KV pair into k+m smaller KV pairs, thus intro-
ducing distributed accesses. At one time point, there may be
user write, user read, and transition write to the k+m smaller
KV pairs. Such concurrent access may cause inconsistency of
the EC data.

3.2 Motivations

First, the reason for challenge 1 is that the data layout of rep-
lication is not suitable for being transmitted to the EC. Thus,
naive transition needs to reproduce a totally new data layout.
For example, in Fig. 4, one main copy of an object as well as
a replica initially split into k data blocks are stored in two-
way replication. During transition, we read the main copy,
perform EC encoding, and only write m parity blocks. This
eliminates the writes of k data blocks in transition.

Second, the reason for challenge 2 is that distributed ac-
cesses to multiple blocks split from an object are not atomic.
Hence, concurrent requests may arrive at different nodes in
different orders. We can detect these corelated requests and
allow only one request to be executed at one time. Further-
more, we leverage the request being executed to serve sub-
sequent read requests more efficiently. For example, a cur-
rent write request can be cached such that subsequent read re-
quests for the same object can be immediately responded to.

04064
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Fig. 5. Overall architecture. Modules identified by solid boxes are intro-
duced to support our design.

4 Design

4.1 Overall architecture

The overall architecture of our design is shown in Fig. 5.
Apart from the dispatcher module inherited from the in-
memory store, we add a placement controller, concurrency
controller, and metadata table. The placement controller de-
termines the data placement of the objects in the nodes. It ad-
opts EC-oriented replication to facilitate redundancy trans-
ition. The concurrency controller is a gate for all requests. It
schedules the processing of requests and protects multiple
concurrent accesses from triggering the consistency problem.
It also coordinates concurrent transition requests and user re-
quests. The metadata table records the redundancy scheme
and the necessary metadata (e.g., key, value length) of each
object.

4.2 Placement control

For an in-memory store using r-way replication and EC (k,m),
we denote the corresponding EC-oriented replication (EOR)
as EOR (7,k). The data placement of EOR is determined by
the placement controller as follows. One main copy of the ob-
ject is kept, while other »-1 replicas are all split into £ data
blocks as EC does. The main copy is stored in the first parity
node, while k£ data blocks of one redundant replica are stored
in k data nodes, and placement for data blocks of different re-
dundant replicas are interleaved by employing a rotated
strategy.

Due to the rotated placement strategy, EOR can tolerate
any -1 node failures. During redundancy transition, the sys-
tem reads the main copy of the object, splits and encodes to
generate the parity blocks. Later, the system only writes the
parity blocks, as k data blocks of the first redundant replica
are already stored in k£ data nodes. It avoids the writes of k
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D, || D, | D;

transition D; || Dz || Ds P,

R S

D; || D, || D2

node; node, node; nodey
\

\
get R %

node; node, node; nodey
a— ) #?

—
— -
_——set P,

—
p—

client

R -> D~D;-> P,

Fig. 6. Transition from EOR(3,3) to EC(3,1). IO overhead is reduced due to the new data placement of EOR.

data blocks in transition, and so it greatly saves the transition
I/Os. It has achieved the lowest 10 overhead.

We take EOR(3,3) as an example (refer to Fig. 6). Sup-
pose the main node is computed as node;; then, the main copy
of the object is stored in node, (parity node), while the other
two replicas are both split into £ = 3 data blocks. The 3 data
blocks of the first redundant replica are stored in node,
node,, and node;. The 3 data blocks of the second redundant
replica are stored in node,, node;, and node;. Since one main
copy is in node, and the other two replicas are split and stored
in rotation in node,;, node,, and node;, EOR(3,3) tolerates any
two node failures.

In redundancy transition, the client retrieves the main copy
from node,. It then splits the object into D,—D; and encodes
them into P,. The client finally writes only P, to node,. The k&
= 3 data blocks of the first redundant replica are kept in k = 3
data nodes, so we do not need any writes of data blocks. Dur-
ing transition, the system needs to delete some data (e.g., k =
3 data blocks in the second redundant replica and the main
copy in node,). The I/O overhead of deletion is small com-
pared to read and write, as only I/O overhead of key size is
caused. In addition, its latency can be hidden by immediately
emitting asynchronous deletion requests after the read phase.

4.3 Concurrency control

With asynchronization, users could submit multiple requests
concurrently. When it meets data blocks produced by EC and
EOR, however, a risk of inconsistency occurs, which we
define as the concurrent consistency problem.

4.3.1 Concurrent consistency problem

KV stores usually use an optimistic strategy and send mul-
tiple read requests to data nodes concurrently and individu-
ally. In our system, the optimistic strategy becomes error-
prone in the presence of block storage. For example, the user
issues read and write requests concurrently for an object (co-
related requests) stored in blocks in Fig. 7. The subrequests
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for different blocks may interleave with each other due to the
disorder during their executions. New data block D, may ar-
rive at node, first, and before the other new blocks arrive,
read requests all arrive. Thus, old data blocks D, and D; and
new data block D, are returned to the client, resulting in in-
consistency of the obtained data blocks. Generally, three cat-
egories of scenarios may encounter the problem of disorder,
i.e., read after write, write after read, or write after write.

4.3.2 Work table and data bypassing

In our design, before a request is executed, it is passed to the
concurrency controller first to be scheduled. Controller de-
tects out corelated requests by work table, a dynamic table re-
cording requests in progress and their contexts. It leverages
temporary local data in memory to serve corelated read re-
quests without actually executing the net request, which we
denote as data bypassing.

As Scheme 1 shows, each row of the work table indicates a
read or write request in progress for a unique key, and cru-
cially, it records the context data for the request, which is the
basis of how data bypassing works. For writing <k;,v,;>, the
context data are exactly v;. While the write request is blocked
on network processing, v; still resides in local memory and
could be leveraged to serve subsequent read requests for k.
For reading k,, the context data is a future, which is a place-
holder for incoming data. Suppose the data to be obtained is
v,; we can fetch it from the corresponding future after v, is in
place. Before the arrival of v,, an attempt to fetch data from
the future would result in synchronization with v,.

The concurrency controller registers a request with its con-
text data in the work table when no request for the same key
exists and deletes the corresponding table entry at the end of
the request. When a request for the same key already exists,
the controller judges the correlation between the registered re-
quest and each subsequent request and then takes different ac-
tions. We now describe how to make use of work tables and
data bypassing to work correctly and efficiently in three cat-
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node; node; node;

node; node, node;

node; node, nodes

Fig. 7. Consistency problem triggered by writing and reading the same KV concurrently. Wrong data are returned.

key IO state context
k, set \'s
k, get future<v,>

Scheme 1. Structure of work table, 1O state is get or set, context indic-
ates address of data to be written or read in local memory. Future means
the data may not be in place, and synchronization is needed until data ar-
rives.

egories of scenarios where the concurrent consistency prob-
lem occurs.

Read after write. When a write request for <k,v> has been
registered in the work table with context data being v, fol-
lowed by which a concurrent read request for & is issued, the
concurrency controller simply fetches v via the work table
and returns it to the read request. Just a table lookup is re-
quired and no subrequest interleaving is caused in the net-
work.

Write after read. When a read request for £ has been re-
gistered in the work table with context data being future<v,>
and a write request for <k,v,> is issued concurrently, as the
read request is already sent to the network, the concurrency
controller cannot forward the write request right now to re-
frain from interleaving requests. It establishes the synchroniz-
ation between two requests through future<v,> and suspends
write requests. Then, it modifies the table entry for £ to state
of writing <k,v,>to provide data bypass and serve the sub-
sequent corelated read requests correctly.

Write after write. When a write request for <k,v;> has
been registered in the work table, the concurrency controller
only lets subsequent corelated write requests fail. Two reas-
ons account for this. First, semantics for write requests are
overwriting, which means that among concurrent corelated
write requests, only one of them succeeds as a result. Second,
it is difficult to clarify the exact order of concurrent requests.
If users do want the request to succeed, they can repeat the re-
quest themselves after being informed of the failure of the re-
quest.

Although the read-after-read scenario does not cause incon-
sistency, the concurrency controller can still leverage data by-
passing to accelerate the performance of corelated read re-
quests. As a future means, a network request has been sent for
data that subsequent corelated read requests want. Therefore,
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it is not necessary to execute subsequent read requests, and
they synchronize with the future until the data they want ar-
rives.

The work table combined with data bypassing not only
solves the concurrent consistency problem but also exploits
the correlation between requests and takes advantage of tem-
porary data in local memory to improve concurrent perform-
ance.

We need to emphasize that the above consistency problem
caused by concurrent access to objects stored in blocks is dif-
ferent from traditional consensus issues. If necessary, con-
sensus algorithms®***! could be integrated.

4.3.3 Coordinate redundancy transition and access
request

We could coordinate redundancy transition and access re-
quests based on the same idea as work table and data by-
passing. An additional transition table is maintained by the
concurrency controller to detect transition requests.

In our design, we do not support concurrent redundancy
transition and corelated write requests. Because overwriting
after the transition makes the transition meaningless, the
transition after the write should be replaced by a write with a
destined redundancy scheme. Therefore, we do not regard
concurrent transition and write as reasonable in application.
We simply let the subsequent transition and write requests
fail.

After the read step and before the end of the transition, dir-
ect data bypass is available (no synchronization is needed). If
corelated read requests appear during the read step of the
transition, the controller synchronizes subsequent requests
with the future.

4.4 Labeling data blocks of different replicas

Data placement of EOR introduces a new problem, distin-
guishing data blocks of different redundant replicas. If r is
greater than two, the number of redundant replicas is no less
than two; as a result, each data node stores at least two data
blocks, and the two data blocks are different for the interleav-
ing placement of redundant replicas. Data blocks are KVs
stored in data nodes in essence; thus, different data blocks on
the same node should be distinguished from each other by
different keys.

We propose a key management protocol to resolve key
conflicts. Key management extends a key to a new key by ap-
pending a 1-2 byte suffix identifying the redundancy scheme
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key block id tolerance

(a)Extension  for  data

key tolerance

(b)Extension for others

Scheme 2. Key management is composed of two extension schemes for data blocks and others.

and an optional block ID (Scheme 2).

For data block splitting from <k,v>, the placement control-
ler extends & by appending 1 byte identifying different blocks
and 1 byte identifying a redundancy scheme. The placement
controller uses this extension for EC and EOR and sets their
tolerance field equal to keep data placement alike.

For <k,v> stored with another redundancy scheme without
blocks, the placement controller simply extends k by append-
ing 1 byte identifying the redundancy scheme. Specifically,
the primary replica of EOR also uses this extension.

5 Implementation

We prototype ElasticMem, a hybrid fault-tolerant distributed
in-memory KV store atop Memcached. We implement the
clustered architecture of ElasticMem atop aiomcache —a
Memcached client implemented in Python. ElasticMem sup-
ports many fault-tolerant schemes, including replication, EC,
EOR, and None (i.e., no redundancy and fits for transient
datal"*7>),

Thread model. ElasticMem is able to issue concurrent 10
requests in a single-thread environment due to 10 multiplex-
ing. Under single-threading, it would be better to keep com-
putation efficient to saturate NIC; thus, we use Python/C api
to leverage Jerasure and gf-complete”™” for Galois-Field oper-
ations in RS code, and as a requirement of gf-complete, the
size of data blocks is aligned to 16 bytes.

Metadata. On the server side, each key is appended a 1~2
byte suffix owing to key mangling. On the client side, a
metadata table is maintained to record the redundancy scheme
and value length of each KV pair. We show that the metadata
storage overhead can be neglected. We consider objects with
a common key size (30 bytes®™) and a large value size (256
KB). Metadata in total are 35 bytes on the client side or ap-
proximately 2 bytes on the server side for an object. Hence,
for a 100 GB data volume, metadata account for 12 MB for
the client or 800 KB for the servers. In addition, metadata
lookup overhead is already contained in read or write opera-
tions and shows no obstacle in the following experiments.

6 Evaluation

We carry out numerical analysis and testbed experiments.
From numeric analysis, ElasticMem reduces the amount of
I/Os of naive transition by 25% — 40%. From testbed experi-

Rep(7)), EC(k,m), and EOR(r,k). We use rep _to_ec to denote
the transition from Rep(r) to EC(k,m) (others are similar). We
define rep to_ec and eor to ec as forward transitions and
ec_to_rep and ec_to_eor as reverse transitions. In the read
step, the 1/O overhead of S is produced as complete data are
needed. In the write step, I/O overhead varies under different
transitions.

Table 1 lists the numerical results. Usually, k& is much
greater than m, and we can suppose k is greater than 2m; thus,
the improved forward transition can reduce the I/O overhead
by more than 40%. Typically, » is 2 or 3, and the improved
reverse transition can reduce /O overhead by 33% or 25%.

6.2 Testbed experiments

Setup. We conduct experiments on a local cluster comprised
of 7 nodes, each of which has a 40-core 2.4 GHz Intel Xeon
Gold 5115, 128 GB of RAM and 10 Gbps network. We run 6
of 7 nodes as ElasticMem servers and the remaining node as
the client.

Methodology. We adopt several sets of (k,m,r) to config-
ure the fault-tolerant scheme. We consider different value
sizes. We measure the normal read and write latency of an ob-
ject as well as the latency of forward transition and reverse
transition under various settings. We also measure the latency
of a single request and the overall latency in the presence of
corelated concurrent read and write requests.

Experiment 1 (Normal read and write latency under
different redundancy schemes). We evaluate the normal I/O
performance of ElasticMem under (k,m,r) = (4,2,3). Rep(») if
the scheme in vanilla Memcached. We let m = r—1replication
and EC can tolerate the same node failures. Fig. 8 shows the
results.

As Fig. 8 shows, Rep and EOR have almost the same read
performance. It is reasonable, as both schemes handle read re-
quests with the same process. In regard to write performance,
EOR incurs higher latency when the value size is less than 64
KB and has a similar write performance to Rep when the
value size is larger than 64 KB. In summary, EOR incurs
slightly more I/O overhead than Rep. As read requests take up
a larger proportion in a cache system, we can deduce that
EOR has similar access performance to Rep.

As the value size increases, the read performance of EC
shows a trend to outperform Rep. The reason is that EC can

Table 1. Numerical results of I/O overhead for redundancy transition and

ments, ElasticMem reduces the transition time of naive trans- improvement.
ition by up to 35% and reduces the latency of a single access transition /O overhead reduced I/O ratio under EOR
request to 6 us at most. rep_to_ec 2k ]:m s L
6.1 Numerical analysis cor to_ec k;mS 2k+m
We analyze .t}.le I/O overhead of naive trar.151t10n and im- ec_to_rep r+1)S |
proved transition under EOR. Suppose the size of a KV pair
. L. - ec_to_eor rS r+1
is S, and the redundancy schemes are r-way replication (i.c., - -
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Fig. 9. Transition performance under different (k,m,r).

better exploit read parallelism and the pipelined operations of
CPU decoding and NIC transfers. As the value size increases,
the write performance of EC is notably better than that of
Rep. The reason is that the I/O overhead incurred by the EC
write is much smaller.

Experiment 2 (Performance of redundancy transition).
We evaluate the improvement of transition performance
under EOR. We consider three sets of (k,m,r), i.e., (4,1,2),
(4,2,3), and (5,1,2). The value size is varied from 1 KB to 4
MB. Fig. 9 shows comparisons of naive transition and im-
proved transition.

We can see that the improved transition constantly outper-
forms the naive transition, and the proportion of improved
time shows a trend to increase with value size. EOR reduces
the forward transition time by 35% at most and 8% at least
and the reverse transition time by 26% at most and 3% at
least. Generally, the improved performance of forward trans-
ition is slightly more than that of reverse transition, as the
saved I/O overhead takes up a larger proportion in forward
transition.

By comparing the transition performance under (4,1,2) and
(4,2,3), we can see that with a greater m/k and r, the im-
proved transition has a smaller improvement over the naive
transition. This is because the saved I/O overhead occupies a
smaller proportion in transition, and it is consistent with the
numerical results in Table 1. In Fig. 9c, there is no more per-
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formance improvement. We also observe that the improve-
ment of the improved transition under EOR hardly increases
with a large .

Experiment 3 (Performance of corelated concurrent
read, write). We issue corelated get or set requests to meas-
ure the improvement brought by data bypassing. We adopt
(kym,r) = (4,1,2) as in experiment 1. We consider a value of
size 1 KB. Roughly we know from Fig. 8 that the read and
write latency for a 1 KB value employing Rep(2) are approx-
imately 500 ps and 600 ps, respectively.

We first test the get-after-set scenario. We issued a set re-
quest followed by 3 corelated get requests and recorded the
overall latency and latency of every single request. Table 2
shows the results.

The write performance fluctuates and is 350 ps more than
we just learned, but we can see the subsequent get requests re-
turn responses in approximately 10 us only, as each corelated
get request only performs a table lookup operation and simply
returns local data in memory. The overall latency of 4 re-
quests is 1038 ps, which is much lower than dealing with re-
quests in sequence.

Table 2. Performance of corelated get and set requests.

set get get get overall

latency (us) 952 13 7 6 1038
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Table 3. Performance of corelated get requests.

get get get get overall

latency (ps) 445 404 396 393 567

Then, we test the get-after-get scenario, which is more
likely to appear than the previous case. Table 3 shows the res-
ults.

From Table 3, we find that the latency of each subsequent
get request decreases, as the get request issued later waits for
less time until the requested data are transferred over the net-
work owing to data bypassing. On average, each subsequent
get request incurs only 41 ps latency for overall latency,
which is a significant improvement for read performance.

7 Conclusion and future work

We design ElasticMem, which implements a hybrid fault-tol-
erant scheme adopting replication and erasure code to make a
better trade-off of performance and memory usage in provid-
ing data availability. ElasitcMem supports per-object redund-
ancy and dynamically adjusts the redundancy of each object
to adapt to changing user demands. ElasticMem exploits EC-
oriented Replication to accelerate redundancy transition while
promising the same I/O performance as normal replication.
By detecting the correlation of concurrent access requests,
ElasticMem leverages data bypassing to solve the concurrent
consistency problem and significantly improves the perform-
ance of corelated requests at the same time.

We can extend our work in the following ways. First, we
can make the server side aware of hybrid fault tolerance to
gain performance improvement in the transition from EOR to
EC. Currently, we only reimplement the client side to sup-
port hybrid fault tolerance on clustered KV stores, reusing the
memcached network communication protocol. If not limited
to this lightweight design, we could enable the server side to
perform RS encoding and send parity blocks among servers.
In this way, when performing the transition from EOR to EC,
as the first parity node holds the monolithic object, which is
all we need for encoding, I/O overhead could be further re-
duced.

In addition, memory pooling based on CXLF**! or
RDMAP*7 has recently attracted much attention. In such ar-
chitecture, memory is disaggregated from computational re-
sources to improve resource utilization and elasticity. Build-
ing a high-performance hybrid fault-tolerant system atop lim-
ited interfaces provided by the memory pool is worth trying.
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