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Adsorption of Cr(Ill) by soils and river sediments during non-redox Cr cycling can cause Cr isotope fractionation.

Public summary
m Non-redox adsorption of Cr(IIl) can result in Cr isotope fractionation.
m The magnitudes of Cr isotope fractionation during non-redox processes are smaller than those during redox processes.

m Slightly positively fractionated Cr isotope compositions of some sedimentary rocks cannot be exclusively linked to at-

mospheric oxygenation.
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Abstract: Chromium (Cr) isotope compositions of sedimentary rocks have been widely used to unravel fluctuations in at-
mospheric oxygen levels during geologic history. A fundamental framework of this application is that any Cr isotope frac-
tionation in natural environments should be related to the redox transformation of Cr species [Cr(VI) and Cr(III)].
However, the behavior of Cr isotopes during non-redox Cr cycling is not yet well understood. Here, we present laboratory
experimental results which show that redox-independent adsorption of Cr(III) by natural river sediments and soils can be
accompanied by obvious Cr isotope fractionation. The observed Cr isotope fractionation factors (—0.06%o0 — —0.95%o, ex-
pressed as 10°lna) are much smaller than those caused by redox processes. Combined with previous studies on redox-
independent Cr isotope fractionation induced by ligand-promoted dissolution, we suggest that the systematic shift to highly
fractionated Cr isotope compositions of sedimentary rocks is likely to represent atmospheric oxygenation, but muted sig-
nals observed in some geologic periods may be attributed to non-redox Cr cycling and should be interpreted with caution.
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1 Introduction

The atmospheric oxygen level fluctuated significantly during
geologic history. There was almost no free oxygen in the at-
mosphere during the first billion years!. The change in oxy-
gen levels in the atmosphere and oceans is widely thought to
have affected the evolution of the biosphere™ .

Chromium (Cr) is a redox-sensitive element, and the Cr
isotope system has been used to reconstruct the fluctuation of
oxygen in geologic history”*. In modern surface environ-
ments, Cr commonly exists as trivalent Cr [Cr(IIT)] or hexa-
valent Cr [Cr(VI)]. Chromium in minerals and rocks is
mainly composed of highly insoluble Cr(IIl), while Cr in
aquatic environments is dominated by soluble Cr(VD)". In
natural environments, Cr(IlI) can be oxidized to Cr(VI)
mainly via manganese oxides", the presence of which re-
quires free oxygen (see Ref. [9] for an alternative interpreta-
tion). Cr(VI) can be reduced by various reductants, such as
ferrous iron, sulfides, and organic matters!""*. Many experi-
mental studies have shown that redox transformation between
Cr(VI) and Cr(III) can lead to significant Cr isotope fractiona-
tion™“. The Cr isotope proxy for atmospheric oxygenation
hinges on this redox-induced Cr isotope fractionation. Be-
cause igneous rocks have a narrow range of Cr isotope com-
positions (expressed as 6*Cr; —0.124%o £ 0.101%o0)!""), any di-
vergence of 3”Cr values of sedimentary rocks from this range
was proposed to represent the presence of Cr(VI) in the sur-
face environment, further indicating oxidative Cr weathering
and then free oxygen in the atmosphere!*.
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An assumption in this model is that Cr isotope fractiona-
tion should be exclusively linked to redox transformations of
Cr. However, Cr can also mobilize in natural environments as
Cr(IID'" and studies on possible Cr isotope fractionation
during redox-independent processes are still scarce. The non-
redox Cr cycling in natural environments consists of three
stages (Fig. 1): (i) Cr liberation from terrestrial silicate reser-
voirs through non-redox weathering, (ii) migration of liber-
ated Cr(IIT) to the ocean, and (iii) incorporation of Cr(IIl) in-
to marine sediments. Potential Cr isotope fractionation dur-
ing these stages deserves detailed study, which can help to
better understand Cr cycling and the application of the Cr iso-
tope system to the reconstruction of paleoenvironments. For
Cr liberation processes, acidic conditions can lead to the dis-
solution of Cr(IIl); Cr(II) can also bind to organic ligands
and HCO; to form complexes and become soluble under nat-
ural conditions"""". An early experimental study suggested
that inorganic acid dissolution of Cr oxides induced no Cr
isotope fractionation”, while subsequent studies illustrated
that organic ligand-promoted dissolution of Cr(IIl) can cause
obvious Cr isotope fractionation, with both enriched or de-
pleted *Cr in the solutions"”*\. These results suggest that Cr
isotope fractionation in natural environments may not exclus-
ively be linked to redox reactions. Archaea and bacteria,
which are thought to have colonized the land since 2.8-2.6
Ga, can secrete organic acids"”'; thus, biogenic organic lig-
ands could be a persistent source of Cr dissolution in geolo-
gic history. However, the scale of the biosphere during early

DOI: 10.52396/JUSTC-2022-0085
JUSTC, 2023, 53(5): 0502


https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2022-0085
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2022-0085
mailto:xqhe@ustc.edu.cn
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2022-0085
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2022-0085

iitST‘( "

Redox-independent Cr isotope fractionation

Fang et al.

Atmospheric CO,

Organic ligand / acid

3

Igneous Cr pool

— Cr(lll
acid / ligand ( )aq

Stage |

Stage llI

CaCO,, Fe?*, organism, clay, etc

cr(in),,

Coprecipitation

Carbonate IF Shale

Fig. 1. Schematic of non-redox Cr cycling. Stage I: Liberation of Cr(IIl) in the terrestrial silicate reservoir induced by biogenic organic ligands, acid or
HCO;. Stage II: The soluble Cr(III) will be partly adsorbed during its transportation in rivers or underground streams. Stage III: Cr(III) in the ocean can be
scavenged by multiple processes and preserved in sedimentary rocks such as IFs, carbonates, and shales.

Earth’s history should be much smaller, so whether organic
ligands were abundant enough and played an important role
in non-redox Cr cycling is unclear™. The dissolution of
Cr(IIT) by carbonate ions or inorganic acids might be the
dominant process of non-redox Cr weathering in the early
geologic period.

After the liberation of Cr(IIT) by non-redox weathering, the
migration of the dissolved Cr(IlI) from weathering profiles to
the ocean is another process that may induce Cr isotope frac-
tionation. During the migration of Cr(IIl) to the oceans
through underground water, streams, and rivers, the dis-
solved Cr(Ill) could be partially adsorbed by soils or river
particles. Whether these adsorption processes can cause Cr
isotope fractionation is still unclear. Unraveling possible Cr
isotope fractionation during adsorption will help to more
comprehensively understand the non-redox Cr cycling during
the early Earth’s history. Therefore, in this study, a series of
experiments were designed to simulate Cr(III) adsorption by
soils and river sediments, which are the most common ad-
sorbents in natural environments, and to further investigate Cr
isotope fractionation during these processes.

2 Materials and methods

2.1 Materials

Two natural materials were chosen as the sorbents. One was a
river sediment sample from the downstream of the Xiaoqing
River (37°14.983'N, 118°43.147'E), located in Shandong
Province, North China™!. The sample was collected with a
stainless steel grab bucket from the surface of the riverbed
(0—5 cm). It is rich in organic matters and is dark gray in
color. The other material was a red soil sample collected from
a paddy field profile in the Yingtan area (28°14'N, 116°53'E),
Jiangxi Province, South China. The sample is 60 cm beneath
the surface. It is highly weathered and is red in color. The
samples were dried at room temperature. The ground sample
powders were measured by X-ray diffraction (XRD) to ana-
lyse the mineral compositions. Unground samples were used
in the adsorption experiments to eliminate the artificial ef-
fects on the experiments as much as possible.
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Chromium(III) nitrate nonahydrate [Cr(NO;);-9H,0]
powder (99.0%, Sinopharm Chemical Reagent Co. Ltd.) was
dissolved in Milli-Q (MQ) water to form a solution with Cr
concentrations of 10 ppm and 50 ppm for the adsorption ex-
periments. These solutions were prepared immediately before
the experiments.

2.2 Adsorption experiments

Two series of experiments, bottle-incubation and flow-
through, were designed to simulate equilibrium systems and
continuous flow systems, respectively (Fig. 2). In bottle-in-
cubation experiments, ~5—200 mg of the soil and river sedi-
ment samples were first washed with 20 mL MQ water 3
times to remove the possible soluble Cr in the samples. The
solids and supernatants were separated by centrifugation, and
the supernatants of the last time were collected for Cr concen-
tration analysis to ensure that no Cr in the original samples
would be released during the experiments. Then, the adsorb-
ents were mixed with 10 mL of 10 ppm Cr solution and
shaken for 24 h in an oscillator. Next, the mixtures were cent-
rifuged, and the supernatants were pipetted out into clean
PFA beakers for Cr concentration and isotope composition
measurements. In flow-through experiments, ~50—800 mg of
the soil and river sediment samples were loaded onto the
polypropylene columns, and the columns were then washed
with 20 mL MQ water to remove the possible soluble Cr in

<«— Cr(NOy)
solution

Centrifugation
after 24 h

Soil ‘

or
River sediment

Filtrate
solution

-«

Flow-through Bottle-incubation
Fig. 2. Schematic for flow-through adsorption experiments (left) and

bottle-incubation adsorption experiments (right).
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the samples. The last 2 mL of eluents was collected for Cr
concentration analysis. Next, 2 mL of 50 ppm Cr solution was
loaded onto the columns and then rinsed with 2 mL of MQ
water for twice. The outlet solutions were collected in clean
PFA beakers for Cr concentration and isotope composition
measurements.

2.3 Analytical methods

To characterize the mineral compositions of the adsorbents,
the sample powders were analysed by XRD on a Japan
Rigaku TTR-III X-ray diffractometer using Cu Ko irradiation
(4 = 0.154056 nm). During the measurements, the 26 range
was set to 5°—65° with a step size of 0.02°.

To estimate the possible oxidation of Cr(Il) during the ex-
periments, Cr(VI) concentrations in all solutions from both
series of experiments were measured by the diphenylcar-
bazide method with an ultraviolet-visible spectrophotometer
(SP-756P, Shanghai Spectrum Instruments Co. Ltd.) at 540
nm, with a detection limit of ~10 ppb. The total Cr concentra-
tions of the solution samples were measured by a Perkin
Elmer Elan 6000 inductively coupled plasma mass spectro-
meter (ICP-MS), with a precision better than 10%.

For Cr isotope analysis, sample solutions containing ~1 pg
Cr were mixed with an appropriate amount of *Cr—*Cr
double spike and then heated on a hot plate overnight to mix
the sample and spike. Double spike was added to correct any
mass-dependent Cr isotope fractionation during the whole
analysis. Chromium was purified by a two-step cation ex-
change chromatography procedure. In the first step, the mix-
tures of the sample and spike were dried and dissolved in 0.2
mL of 6 mol/L HCI and heated at >130 °C. Then, the solu-
tion was diluted to 1 mol/L HCI with MQ water and pipetted
into a cation exchange column filled with 1 mL Bio-Rad AG
S0W-X8 resin (200—400 mesh). Next, 4 mL of 1 mol/L HCI
was added to the column. The Cr was eluted as neutral mo-
lecules, while other cations were retained in the resin. In the
second step, the samples were further purified by another
cation exchange column with 0.33 mL Bio-Rad AG 50W-X8
resin. The samples were loaded onto the column in diluted
nitric acid. The remaining impurities were eluted by 2.5 mL
of 0.5 mol/L HF and 8 mL of 1 mol/L HCI. Then, the Cr was
eluted by 3 mL of 2 mol/L HCI. The blank of the whole pro-
cedure was <5 ng. The Cr isotope compositions were meas-
ured by a Neptune plus multiple-collector inductively coupled
plasma—mass spectrometer (MC-ICP-MS). During the meas-
urement, the intensities of four Cr isotopes (*°Cr, **Cr, *Cr,
*Cr), “Ti, *'V, and *Fe were monitored. The latter three were
monitored to correct the interferences on *Cr and *Cr. Medi-
um to high resolution mode was used to separate the poly-
atomic interferences, such as “Ar"*C, “Ar"N and *Ar"O. The
typical intensity of the *Cr beam was 4-8 V with a Cr con-
centration of 200 ppb. The spiked internal standard (SCP) and
the spiked National Institute of Standards and Technology
(NIST) standard reference material (SRM) 3112a were ana-
lysed within each analytical session to ensure instrumental ac-
curacy. Each sample was measured twice. The uncertainties
for Cr isotope compositions are the largest values among the
2SD of two sample measurements, 2SD of several standard
measurements in the same analytical session, and the long-
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term reproducibility of the standard (0.05%o).
2.4 Notations

Chromium isotope data are expressed as the relative devi-
ation from NIST SRM 979:

87Cr = [("Cr/"Cr)umpe /(" Cr/*Co)siors — 11 1000.

The isotope fractionation factor a is used to express the iso-
tope fractionation degree, which is defined as:

a= Rpmduct /Rreaclam!

where R represents the isotope ratio (*Cr/*Cr). A parameter ¢
is defined to conveniently quantify isotope fractionation:

e=10lha~a-1.

For equilibrium isotope fractionation, the difference in
&”Cr values between the reactant and the product can be ex-
pressed using 4:

3 53 53
A = 10 lna = 6 Crproduc( _6 Crreaclanl'

For kinetic isotope effects, the Rayleigh distillation equa-
tion is often used to quantify Cr isotope fractionation, ex-
pressed as:

5% Cr, = (8" Cr, + 1000) /' — 1000,

where 3”Cr, and 6*Cr, are the Cr isotope compositions of the
reactant at the beginning and at time ¢, respectively, and f'is
the fraction of the remaining reactant. In the Rayleigh frac-
tionation model, & — 1 (or 10°Ina, ¢) can be regarded as the
isotope fractionation between the remaining reactant and the
instantaneous product.

3 Results

3.1 Mineral compositions

Mineralogy results from XRD analyses show that the river
sediment sample and the soil sample are mainly composed of
quartz and clay minerals (Fig. 3). No other crystallized com-
ponent was detected in the soil sample, while some other min-
erals, such as albite, pyroxene, and calcite, were identified in
the river sediment sample. It is likely that there are other
amorphous or poorly crystallized components in the samples,
which cannot be easily identified by XRD. Iron-rich minerals,
such as ferrihydrite and goethite, are likely to be important
components in the red soil, leading to the red color of the
sample. The organic phase should also be an important com-
ponent in the samples, especially in the river sediment
sample™. Almost all these components have previously been
shown to have the capacity to adsorb Cr(IIT)*".

3.2 Adsorption experiments and Cr isotope compositions

The Cr concentrations of the final washing solutions before
the experiments are near the detection limit of ICP-MS, indic-
ating a negligible contribution of indigenous Cr in the river
sediment and soil to the adsorption experiments. The frac-
tions of adsorbed Cr(III) by different amounts of solid adsorb-
ents are shown in Table 1 and Fig. 4. Both the river sediment
and the soil show a large capacity for Cr(Il) adsorption. The
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Fig. 3. XRD patterns of the soil and river sediment samples.

fractions of adsorbed Cr(III) by aliquot weight of the adsorb-
ents in the flow-through experiments are less than those in the
bottle-incubation experiments (Table 1), which is conceiv-
able, as the adsorption sites of the adsorbents may not be suf-
ficiently occupied during the relatively short time during the
flow-through experiments (less than half an hour). No Cr(VI)
was detected by the diphenylcarbazide method, suggesting
that there was no Cr(IIl) oxidation or that the Cr(VI) gener-
ated by oxidation during the experiments was negligible.
Because of the large adsorption capacity of the adsorbents,
some remaining dissolved Cr(Ill) in the supernatants are not
sufficient for Cr isotope analysis. Four supernatant samples
using the river sediment as the adsorbent and seven super-
natant samples using the soil as the adsorbent were analysed
for their Cr isotope compositions. The results are shown in
Table 1 and Fig.4. The remaining dissolved Cr in the

Table 1. The fractions of adsorbed Cr(IIl) by different amounts of solid
adsorbents and the Cr isotope compositions of the remaining Cr after the
experiments. A”Cr,; means the isotope offset between the remaining Cr
and the initial solution (8 Crygyion — 0 Clipitiar)-

0.9
B Sediment (flow-through) Q{\g\e
07 | @ Sediment (bottle-incubation) 8\«\&’/ ngloe
O 5Soil (flow-through) )/ X@\o&/
O Soil (bottle-incubation)
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£
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0.3
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0.1
-0.1 T T T T

04 0.6
Fraction adsorbed

Fig. 4. Cr isotope compositions of remaining Cr in solution versus the
fraction of Cr adsorbed during Cr(III) adsorption experiments by soil
(green symbols) and river sediments (blue symbols). Squares represent
results from flow-through experiments, and circles represent results from
bottle-incubation experiments. The gray solid line denotes the Cr isotope
composition of the initial solution, and the gray dashed lines denote the
measurement uncertainty (2SD). The yellow lines are the modelling res-
ults for isotope fractionation using the Rayleigh fractionation model with
different isotope fractionation factors a, and the violet lines are the calcu-
lation results assuming equilibrium fractionation.

solutions are all characterized by positively fractionated 6*Cr
values, except those in the flow-through experiments with soil
as the sorbent. The offsets between the 6°Cr values of the re-
maining dissolved Cr and the initial solution (A*Cry; =
0" Cryoution — 0°Crinisia) In the bottle-incubation experiments
are larger than those in the flow-through experiments. In ad-
dition, Cr isotope fractionations induced by the soil are larger
than those induced by the river sediment in the bottle-incuba-
tion experiments. The largest A*Cr,; valueis 0.42 %o, ob-
served in the bottle-incubation experiments using the soil as
the adsorbent. The Cr isotope data cannot be well fitted by a
Rayleigh fractionation model, suggesting that the Cr isotope
fractionation during adsorption of Cr(III) by the river sedi-
ment and soil samples did not follow a unidirectional
Rayleigh distillation process. Moreover, an equilibrium frac-
tionation model also cannot exactly fit the isotope data, indic-

Experimental Weight of Fraction  8"Cr o A”Cr; ating that equilibrium status had not been reached during the
conditions  adsorbents (mg)  sorbed  (%0) (%0) experiments if the isotope fractionation was caused by iso-
50 0.76 0.17 0.05 0.13 tope exchange between the soluble Cr(II) and the adsorbed
Flow-through 100 0.89 0.24 0.05 020 Cr(IIT). Nonetheless, to calculate the range of isotope frac-
(sediment) 200 0.83 014 005 0.10 tionation factors, we use Rayleigh fractionation and equilibri-
400 1.00 - - B um fractionatiog models to ﬁ.t the individu_al data.points (67?-
cept the unfractionated data in the bottle-incubation experi-
100 0.18  —0.02 0.05 -0.06 ments with the soil), and the results show that the isotope
Flow-through 200 0.36 -0.01 0.05 -0.05 fractionation factors (expressed as 10°’Ina) range from
(soil) 400 0.65 0.00 0.05 —0.04 —0.06%0 to —0.95%o (Fig. 4).
800 0.85 —-0.01 0.05 -0.05 4 Discussion
5 0.83 0.33 0.05 0.29
Bottle-incubation . . . . . .
(sediment) 10 1.00 - - - 4.1 Cr isotope fractionation during adsorption
20 1.00 - - - Because no Cr(VI) was detected, the positive °Cr values of
50 0.44 046 006 0.42 the remaining solution after the experiments should not be
Bottle-incubation 100 0.72 037 006 033 caused by redox reactions. Thus, our experimental results
(soil) suggest that redox-independent adsorption of Cr(II) can be
200 0.94 046 0.05 042 . . . .
accompanied by Cr isotope fractionation.
0502-4 DOI: 10.52396/JUSTC-2022-0085
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The flow-through experiments were designed to simulate
the unidirectional adsorption process without much isotope
exchange, as the initial solution had flowed through the
column in less than half an hour. There are obvious changes
in the Cr isotope compositions of the effluents from the flow-
through experiments using the river sediment sample (as least
—0.06%o in 10°lna, Fig. 4). A possible mechanism for isotope
fractionation is the kinetic effect caused by diffusion. During
the flow-through experiments, some Cr(Ill) in the solution
may need to diffuse into the interlamination of the clay miner-
als before it was adsorbed. Because ions with light isotopes
diffuse faster, as a consequence, the solution would be en-
riched in heavier isotopes. Similar diffusion-induced kinetic
Cr isotope fractionation has been previously reported in an
experimental study of Cr(VI) adsorption on goethite™.
However, clay minerals are also present in the soil sample
(Fig. 3), whereas no isotope fractionation was observed in the
flow-through experiments using the soil. Therefore, the diffu-
sion process is unlikely to account for the isotope fractiona-
tion observed in the experiments, although the different
particle sizes of the adsorbents may affect the diffusion pro-
cess, which needs further specific experiments for evaluation.
Instead, the different behavior of Cr isotope fractionation in
flow-through experiments using two different adsorbents may
be caused by organic matters. The river sediment is enriched
in organic matters (TOC value: 0.87%)"], while the red soil is
less enriched (TOC value: ~0.25%)"". Previous studies sug-
gested that organic ligands can lead to non-redox Cr isotope
fractionation; the largest isotope fractionation was observed
in small fractions of dissolution of Cr hydroxides by ligands
with low metal-ligand stability constants, which may be
caused by kinetic effects™. A similar process may result in Cr
isotope fractionation in the flow-through experiments using
river sediment in this study, but the intrinsic mechanism is
still unclear given that organic ligands can lead to both posit-
ive and negative Cr isotope fractionations™. Alternatively,
the observed Cr isotope fractionation in the flow-through ex-
periments using river sediment may be simply attributed to
the initial stage of isotope exchange, similar to that in the
bottle-incubation experiments, which is discussed as follows.

The observed Cr isotope fractionations in the bottle-incuba-
tion experiments are greater than those in the flow-through
experiments. The flow-through experiments were all finished
within half an hour, while bottle-incubation experiments were
conducted for 24 h. We suggest that the adsorption of Cr(III)
was initially very quick and quantitative, i.e., nearly all
Cr(IIT) at the initial stage was adsorbed by active adsorption
sites; thus, no or very small isotope fractionation was ob-
served at the initial stage of adsorption (such as the flow-
through experiments). Then, isotope exchange between ad-
sorbed Cr(III) and dissolved Cr(IIl) may have caused Cr iso-
tope fractionation, i.e., equilibrium isotope fractionation. The
isotope exchange process may be very slow because isotope
equilibrium had not been reached within 24 h in the bottle-in-
cubation experiments with soil; otherwise, the three points in
this series should lie on a linear line in Fig. 4.

The equilibrium isotope fractionation highly depends on
the bonding environments of the element. In our experiments,
the soil and river sediment mainly consist of quartz and clay
minerals, together with some minor components, such as de-
trital silicates, carbonate, and probably iron (hydro)oxides and
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organic matters; all of these components can intensely adsorb
Cr(IIT). Previous studies on the species of Cr(IIl) adsorption
complexes on the surfaces of silica, aluminum (hydro)oxides
(y-Al,O3, y-AlIOOH), clay minerals (kaolinite, illite, and mont-
morillonite), calcite, and alfalfa biomass all showed that Cr(III)
mainly forms a monodentate or bidentate inner-sphere com-
plex with dimers or polymers of Cr—O octahedra®™ >*>"»* %1,
As dissolved Cr(III) in solution is predominantly monomeric
Cr—O octahedra™*, the polymerization of Cr—O octahedra
and chelation with surface functional groups during adsorp-
tion may lead to a slight change in the bond energy around
Cr, resulting in Cr isotope fractionation during isotope ex-
change (equilibrium isotope fractionation). Because the spe-
cific coordination shells around Cr on the surface of various
adsorbents can be slightly different, such as the atom types in
the second coordination shell, the equilibrium isotope frac-
tionation factors during adsorption of Cr(III) may not be
identical, which may account for the differences we observed
in experiments using the soil and the river sediment as the ad-
sorbents. On the other hand, because the first coordination
shells around Cr in both the monomer and polymer com-
plexes are composed of 6 oxygen atoms, the differences in
bond energy should be relatively small compared to that
between Cr(VI) and Cr(IIl). Therefore, the equilibrium iso-
tope fractionation factor should also be smaller than that
between Cr(VI) and Cr(III)"*". Specific studies of Cr(III) ad-
sorption by isolated components in soil and sediment are
needed to further understand the mechanism of Cr isotope
fractionation.

The experiments in this study are only simply designed, so
they cannot represent all circumstances in natural environ-
ments. In natural non-redox Cr cycling, Cr(OH);(,q), Cr(Il)-
carbonate complexes, and Cr(IIl)-organic ligand complexes
may be more common dissolved species. Further adsorption
experiments using these species as adsorbates are needed to
comprehensively understand Cr isotope fractionation during
the transportation of Cr(III) in non-redox Cr cycling.

4.2 Implications for Cr isotopes as a proxy for atmo-
spheric oxygenation

Previous studies have shown that organic ligand-induced non-
redox dissolution of Cr(IlI) can cause Cr isotope fractiona-
tion"*". Whether this process played an important role dur-
ing the early Earth’s history with only a small scale of the
biosphere is unclear. The experiments in this study show that
adsorption of Cr(II) by natural river sediments and soils can
be accompanied by obvious Cr isotope fractionation, further
suggesting that the migration process of dissolved Cr(III) dur-
ing non-redox Cr(IIl) cycling in natural environments can
also lead to positively fractionated ”Cr values. Thus, devi-
ation of 8®Cr values observed in sedimentary rocks away
from the igneous range should not necessarily correspond to
the presence of Cr(VI) and then a high atmospheric oxygen
level.

Nonetheless, it is noteworthy that the isotope effects of
redox and non-redox Cr cycling are distinctive. The experi-
mentally determined equilibrium isotope fractionation factor
between Cr(VI) and Cr(IIl) is ~ —5.8 %o (10°lna) ¥, and the
values for kinetic isotope fractionation range from —2 %o to
—4%o (10°Ina)*), much greater than the values caused by ad-
sorption (10°lna = —0.06 %0 ——0.95 %o) in this study.
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Although the calculated isotope fractionation factors may not
be accurate enough because of the non-equilibrium condi-
tions in this study, the intrinsic equilibrium isotope fractiona-
tion factors are likely to be small due to the little change in
bonding environments around Cr during adsorption (see dis-
cussion in Section 4.1). Moreover, the large isotope fractiona-
tions induced by ligand-promoted dissolution were mainly
observed in small fractions of dissolution by low stability
constant ligands, which may indicate that the overall ligand-
promoted isotope fractionation in natural environments
should be much smaller (< 1.3 %o, A*Cryution-sotia)” - Hence,
we infer that the significantly positively fractionated Cr iso-
tope composition observed in some sediments can be readily
explained by oxidative weathering. In contrast, some muted
positively fractionated 3*°Cr values in sedimentary rocks may
not be related to an increase in atmospheric oxygen level
(“whiff of oxygen”), as previously suggested"'**! because
the suboxic surface environment at the onset of atmospheric
oxygenation would result in significant partial reduction of

Cr(VI) during transportation and the remaining Cr(VI) in the
oceans should be characterized by extremely positive 6*Cr
values instead of by muted signals. Although we are not able
to set a threshold of 3”Cr values to represent the onset of ox-
idative Cr weathering, it may be helpful to use the boxplot of
&”Cr values in different periods to recognize the signals from
oxidative weathering (Fig. 5). The occasional slightly frac-
tionated 6”°Cr values caused by non-redox Cr cycling under a
reducing atmosphere would be plotted as outliers in the box-
plot if there are sufficient data points. In this light, the slightly
positively fractionated 6*Cr values observed in sedimentary
rocks from the Archean and possibly some periods in the
Proterozoic were likely caused by non-redox Cr cycling and
should not reflect transient atmospheric oxygenation events.

5 Conclusions

This study reports Cr isotope fractionation during the adsorp-
tion of Cr(IIT) by natural soils and river sediments. The main
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Fig. 5. (a) Compilation of Cr isotope compositions of sedimentary rocks throughout Earth history from the literature '******1. The gray band indicates the
range for igneous reservoir!”. (b) Boxplot of the Cr isotope data at 100 million-year intervals. The box comprises the 25th and 75th percentiles, the black
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findings are as follows:

(1) The adsorption of Cr(II) by soils and river sediments,
with no redox transformation of Cr, can be accompanied by
obvious Cr isotope fractionation (10°Ina =—0.06%0 — —0.95%o).
Thus, fractionated 6*Cr values out of the igneous range
should not necessarily be interpreted by redox cycling of Cr.

(II') As the magnitudes of Cr isotope fractionation caused
by non-redox Cr cycling are much smaller than those in redox
reactions, the significantly positively fractionated Cr isotope
composition of some sedimentary rocks can be explained by
atmospheric oxygenation, but some muted signals may be
caused by non-redox reactions.
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