jicsrg N

http://justc.ustc.edu.cn

Accessibility percolation on N-ary trees

Zhishui Hu, Jinwen Wu, and Liang Dong -

Received: March 30, 2022; Accepted: June 25, 2022

Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei 230026, China

™Correspondence: Liang Dong, E-mail: dongliang@njust.edu.cn
© 2022 The Author(s). This is an open access article under the CC BY-NC-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Graphical abstract

Consider a rooted N-ary tree
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The overall framework of our accessibility percolation on a rooted tree.

Public summary

m Several limit theorems for the number of accessible vertices on an N-ary tree are established.

m The law of large numbers of the length of longest increasing paths on an N-ary tree is proved.
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Abstract: Consider a rooted N-ary tree. To each of its vertices, we assign an independent and identically distributed con-
tinuous random variable. A vertex is called accessible if the assigned random variables along the path from the root to it
are increasing. We study the number C,, of accessible vertices of the first k£ levels and the number C, of accessible ver-
tices in the N-ary tree. As N — co, we obtain the limit distribution of C, z, as 8 varies from 0 to +co and the joint limiting
distribution of (Cy,Cyv.vaw) for 0 <a <1 and t€R. In this work, we also obtain a weak law of large numbers for the

longest increasing path in the first n levels of the N-ary tree for fixed N.
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1 Introduction

For N € N, let T™ be a rooted N -ary tree, in which each ver-
tex has exactly N children. The root of T® is denoted by o.
Each vertex o€ T™ is assigned a continuous random vari-
able X, called its fitness. The fintness values {X,,o € T™}
are independent and identically distributed (i.i.d.) random
variables. Let |o| denote the graph distance from the root o to
o. For any o € T® with |o| = k € N, there is a unique path p

from o to o:
0500 5?5 gD 5 o

We say that o is accessible and the path p is increasing if the
assigned random variables are increasing along the path p,
i.e.,

X{, < X(r(n < X(,.u) <o < X(r(kfl) < Xa..

This model is called accessibility percolation by Nowak and
Krug.

The accessibility percolation model is inspired by evolu-
tionary biology. Each vertex represents one genotype that has
an associated fitness value. A particular genotype gives rise to
N new genotypes through mutations, which either replace the
original wild genotype or disappear. In the “strong selection,
weak mutation” (SSWM) regime, only mutations which re-
produce a fitter genotype can replace the wild genotype and
survive. Thus, a survival mutation path is one with increasing
fitness values. In this paper, we use the House of Cards (HoC)
model (see, for instance, Refs. [2, 3]), in which all fitness val-
ues are independent and identically continuously distributed.

The accessibility percolation on N-ary tree T has been
studied by many scholars, and most of them concentrated on
limit properties of the number of accessible vertices with
level k € N, which can be written as

Zyy = Z]I(o- is accessible),

or|=k

where we sum over all vertices o with |0 = k in the N-ary
tree.

Since we only care about whether the fitness values along a
path are in increasing order, as long as the random variables
are continuous, changing the precise distribution will not in-
fluence the results. Without loss of generality, we assume
throughout this work that all the random variables
{X, : 0 €T™} are independent and uniformly distributed on
[0, 1]. For any x € [0, 1], we introduce the probability meas-
ure under the condition that the fitness value of the root
X, = x is given, i.e.,

P.() =PCIX, = x),
and denote by E, the expectation with respect to P,.

Nowak and Krug'!, Roberts and Zhao!", Chen", and Duque
et al. studied the probability P,(Zy, > 1). Roberts and Zhao!"!
proved that
1,
0,

ifa<e;
ifa>e.

IimPy(Zy.y 2 1) = { (1)
N—oo
This implies that there is a phase transition at @ =e. Chen"

extended it and obtained that

L,
07

ifg>3/2;

i <3/2. 2)

IlvimPO(ZN.eN—BIogN >1)= {
He also obtained the asymptotic behaviors of Z,,y as N — oo.
Assume that 0 < @ < 1 and x > 0. Then, under P,_,.,

ZN,wN d
_—

mN.ar

eZ, 3)

where my, = (@N)™/(aN)! and Z is an exponential variable
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with mean 1.

The numbers of increasing paths on other graphs have also
been widely studied. Coletti et al.l” considered infinite spher-
ically symmetric trees, Hegarty and Martinsson™!, Berestycki
et al."' and Li"" studied the N-dimensional binary hyper-
cube {0,1}". We refer to Krug!'? and reference therein for
more related models and results. Hu et al.'" studied the num-
ber of accessible vertices on random rooted labelled trees.

The remainder of this paper is organized as follows. In Sec-
tion 2, main results are stated. The proofs of Theorems
2.1-2.3 are provided in Section 3. Finally, we present the
proof of Theorem 2.4 in Section 4.

2 Main results

We first consider the number of accessible vertices in the first
k levels, i.e.,

k
Cyii= Z]I(cr is accessible) = ZZN./" 4)
0

o<k J=

where we sum over all nodes o with |o| < k in the N -ary tree.
Assume that x>0, 8> 0 and 0 < @ < 1 are real numbers and
let Z be an exponential variable with mean 1.

Theorem 2.1. Under P, _,., v, we have that as N — oo,

(a) if B < @, then

P
e N CN,,EN , 0;

(b) if B = @, then
« €72

eV CN,ﬁN

>
(c) if B > a, then
e VCypy = eZ.

We can also study the total number of accessible vertices in
the N -ary tree T®), which can be written as

Cy:= Z]I(o- is accessible),

o

where we sum over all nodes o in the N-ary tree. For any
x€[0,1], by noting that E(Cy) =e™"™ < oo (see Lemma
3.2), we have Cy < oo a.s. P,. Furthermore, we obtain the joint
limiting distribution of (Cy, Cy oy.ivan) 88 N — 0.

Theorem 2.2. For any 0 <a <1, x>0 and r € R, we have
that under P, _,, .,

& (Cu. Cramovar) — (LBW)e"Z, N0, (5)
where @(-) is the cumulative distribution function of the
standard normal distribution.

From Theorems 2.1 and 2.2, Cy, and C, 4 (with 8> a) have
the same limit distribution. It is natural to imagine that the
number of accessible vertices at distances greater than SN
from the root o is relatively small. In fact, the following The-
orem 2.3 shows that under P,_,,,,y, most of the accessible ver-
tices concentrate on the levels from aN-by VN to
aN + by VN for any sequence {by} with by — co.

Theorem 2.3. Let {by,N > 1} be a sequence of real num-

bers with by — o0 as N — co. Then under P,_,,,,

CN.aN+z>N VN T CN.nN—bN VN P
—
Cy

N — oo,

]‘?

Theorems 2.1-2.3 describe the distribution of the number
of accessible vertices from the root o. Another interesting
quantity is the maximum level of accessible vertices (i.e., the
longest increasing path from o) which is defined as

M, := max{|o]| : o is accessible}.

Noting that {M, >k} ={Z,, > 1}, it follows from Eq. (2)
that (under P,)

MN_eN p 3
—_— .
logN 2

N — oo,

In the related existing results on N -ary trees, it is generally
assumed that N — co. For fixed N, it is clear that
M, < Cy <o as.. In this case, we can consider the longest
increasing path down the N-ary tree. We say that the path
P =0y, -0, with length I(P) =k is a path down the tree if
P starts at any vertex and descends into children until it stops
at some node, i.e., oy =|o|-1=---=|o|—k, and P is in-
creasing if X, <X, <---<X,. Let T? be the subgraph of
T® induced by the set of vertices with levels not exceeding n.
Define

Ly, :=max{l(P): Pis an increasing path down T"}.
Theorem 2.4. Let N > 2 be a fixed positive integer. Then
LN.n P

——— — 1, n—>oo.
nlogN/logn

In the following Sections 3 and 4, we prove our main res-
ults stated above.

3 Proofs of Theorems 2.1-2.3

Before the proofs, we need the following preliminary lem-
mas.

Lemma 3.1. Let 0,0,,0, be vertices on an N-ary tree. If
|o] = k, then, for any 0 < x < 1,

(1-x

K ©)

P (o is accessible) =

_ k-1
P.(ois accessible|X, =y) = M

k—1)! )

Furthermore, let o, A 0, denote the latest common ancestor of
o, and o,. If |o|=m+i,|on=m+j and |o, Ao, =m for
some m >0 and i, j > 0, then, forany 0 < x < 1,

(1 =x)y=™i(i+ !

P.(both o, and o, are accessible) = —
(m+i+ lilj!

®)

Proof. We assume that X, X,,--- areii.d. random vari-
ables and distributed uniformly on [0, 1]. By symmetry, we
have
B 1
=

This, together with P(x < X;,--+, X, < 1) = (1 — x)*, yields that

PX, < <Xix <X, , X < 1)
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(1-x)
kKl
Thus Eq. (6) holds. The proof of Eq. (7) is similar and we

omit the details here.
We next prove Eq. (8). If |o|=m+1i, |o,|=m+j and
|ory A oy = m for some m >0 and i, j > 0, then

P.(o isaccessible) =P(x < X, <--- <X, < 1) =

P.( both o, and o, are accessible) =
P(-x < Xl <---< XuH—z" Xm < Xm+i+l <. < Xm+i+j) =
1

f P(X < Xl << Xm+i9 X, < Xm+i+l << Xn+i+/|)(m = y)dy

1 ! m—1 i+]
mﬁ@—x) (I-y)y“dy=

(1 _x)m+i+j 1 » n
~— [ (1 -1)dr =
(m—l)!i_!j!jo (1=

(1= x)™(i + j)!

(m+i+ plilj!
where we have used the fact that

(m—-DIG+ j)!

1
m—1 it — o : —
jof (1—0)*dt = Bm,i+ j+ 1) = =y

and B(:,-) is the beta function. This proves Eq. (8), and also
completes the proof of Lemma 3.1.
Lemma 3.2. For any x € [0, 1] and N,k € N, we have

k

E(Cu)= )

n=0

Nn
.y (1-x), Var(Cy)< (EXCN,k+l)2'

Furthermore, we have E.(Cy) = e and Var,(Cy) < e**",
Proof. Since Cy, =}, I(0 is accessible) and #{o : |o| =
k} = N*, it follows from Eq. (6) that
.

E.(Cy,) = ZPX((T is accessible) = Z %(1 _—

lorl<k n=0

Similarly,

o

BCo=Y N

n!
n=0

n

(1-x)y" ="',

It is clear that, for any m, i, j € N,

#H(o\,0,) o | =m+i,|on =m+ jloy Aoy =m)

(Nf 1)Nm+i+jfl, l:,j> 1’ )
Nm+l+/’ i=0or j= O;

< N”HHj.

©)
This, together with Eq. (8), implies that
E.(Cxp)’ =

k  k-m

ZZZH(|O’1|=m+i,|O-Z|:m+j’

m=0 i,j=0 .0
lory Aoy = m)P.(both o, and o, are accessible) <
(N1 = x)" (i + j)!

(m+i+ jli!j!

k  k-m

2

m=0 i,j=0

(10)

By noting that, for any n, j € N,

Z":(i+j)! _(n+j+ 1)
i oG+’

i=0

it follows from (10) that

2-3

o (V=)™ i+ )
(m+i+ jlilj!

ECu)’< ),

meickm,iz0 j=0

2 Z o (V=)™ (4 )l

o mo 0 (n+ plilj!

Z": S (N =)y n+j+1
j=0  n=0 n"]' -]+ 1 -
k k n+j k k _ i
Z (N(l—.x)) / +Z (N(1 .x)) n _
Lol ol A D!
(B.Cro)* + (E.Crpn)’s
(11
where we have used
zk: k (N(l _x))m—jn B k=1 k+1 (N(l _x))n+/ < (E c )2
P - — a0 SUEbwia)
parsr n!(j+ 1! pr n!j!

Therefore Var,(Cy,) < (E,Cyii)*.

Since Cy,,k=1,2,---, are nondecreasing with respect to k
and lim,_,Cy, =Cy, we obtain that Var.(Cy) < (E,Cy)* <
e by the monotone convergence theorem. The proof of
Lemma 3.2 is completed.

Remark 3.1. For Cy, we can obtain the explicit expression
of Var,(Cy). By using arguments similar to those in (10) and
(11), we have

= o

N-1 (N(l _x))m+i+j(i+ .)!
BCw= N Z SRRV :
m=0i,j=0 (m+l+]).l.].
N+l v (N(1=0))™ o (N(1=x)" )
N Z S (D) Z o
N-1x3 50 (VO =0) n+ j+ 1
+
CRP 3D Ny m Ty
Jj=0  n=0
N+1 < (N -x)'(n+1) I
N Z ! —-€ =
n=0
N-1 N+1
N (2e2N(1—x> _eN(H)) + T((N(] —x)+ ])eN(H) _eNim =
MeZN(H) + NN+ DA~ 0 +2_NeN(H).
N N
Thus

2

e2N(l —x)

NIN+1D(A-x)+2-N
+ N €

Lemma 3.3. For any fixed O<a<1,8>0,x>0 and
k € Z, we have that

N(1-x)

N —
Var,(Cy) = N

0, if B<a;
lim eiuNEl—n*-x/N(CN,/:'N-t-k) = (1/2)e™, ifﬁ =a;
N=eo e, if B> a.

Proof. For any N e N, we let Xy, Xy,, -+, Xyy denote a se-
quence of i.i.d. Poisson random variables with mean a — x/N,
then Xy, +---+ X,y is also Poisson-distributed (with mean
aN —x),i.e.,

e NI (@N — x)"

n!

PXy 4+ Xy =n) = , n=0,1,2,---.
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Thus, by Lemma 3.2,

BN+k -

Brven(Crgret) = )~ (@ = x/NY =

n=0

e P(Xy, ++ -+ Xy < BN +k). (12)
By using the following basic results:
T—1-1 1 )
imE " 2 fimer=1,
1—0 12 -0
we have that, for any r € R,
Eexp{it(Xy, + -+ Xyy—aN)/ VaN} =
exp{(aN —x)(e"" — 1) —it VaN} =
exp{aN(Ee" V™ -1 —it/ VaN) — x""™" - 1)} -
exp{—£/2}, N — oo.
Thus
Xy + -+ Xyy—aN L N@,1), N — oo, (13)
VaN
and then
0, ifB<a;
HmPXy, +-+Xuw <BN+k) ={ 1/2, iff=a;
N=eo 1, ifg>a.

This, together with (12), proves Lemma 3.3.

For any k > 1, we let ¥, denote the available information of
the first k generation on the N-ary tree,
Fe=0{X, :|lo| < k}.

Lemma 3.4. Forany O<a<1,8>0, x>0 and £ >0, we
have

ie.,

limmP,., (e

k—c0 N—>co

E(CypnlF) = Crpn

>£)=0.

Proof. Let o be a vertex on the N-ary tree. On the subtree
rooted at o, we let Cy,(0) be the number of accessible ver-
tices in the first k generations. Then, for any k < 8N,

Cypn =Cyi+ Zﬂ(o- is accessible)Cy gy (07).

lol=k

By noting that {(Cyp(0).X,).lo] =k} are i.i.d. random
vectors and have the same distribution as (Cy gy, X,), We
have

E(CynlF2) =Cui+ ) |I(or is accessible)Ey, (Cy-i(0) =

o=k

Cyi+ Z I(o- is accessible)Ey (Cy i),

o=k

and

Var(CN.ﬁN|7:k) ::E((E(CNﬁN'?:k) - CNﬁN)H '7:k) =
Z I(o is accessible)Vary, (Cy ).

lol=k

By applying Lemma 3.2, we have that, forany 0 <y < 1,

2-4

BN—k+1 n

Var,(Cy ) < ( Z

n=0

2
(l—y) ) <CN(1 V).
n!

Thus,
E, —a+x/N (Var(CN,ﬁN |7:/<)) =
1
N* f]_ N P,_..v(0 is accessible|X, = y)Var,(Cy sv_)dy <
N*¢ '
(k—1)!
1 N k-1 _2aN-2z
— —x)le* N Edz <
(k—l)!L (z—x)""e dz

2aN-2x

1
S o= —ax/N) ey =

€
k=1)!

f Zk_le_zzdz — 2—kezm\/—2x.
0

By using Chebyshev’s inequality, we have
imlim P, (e E(CyplT7) ~ Cupl > €) <

ko0 Nosoo
El—u+x/N(Var(CNﬁN|7—'I<)) _
g2e2eN -

limlim 0.

k00 Nosco

The proof of Lemma 3.4 is completed.
Lemma 3.5. Forany O<a<1,8>0, x>0 and 1> 0, we
have

limm B, ,.,.( exp{—Ae " B(CymlF0)}) =

k—00 N—oo

(1+2e™)7, if B> a;
(1+2e™/2)", ifB=q;
1, if B<a.

Proof. By noting that Cy, is nondecreasing with respect to
k and applying Lemma 3.3, we have that, for any fixed k € Z*,

0 <™ Bp_yen(B(Crmanl F) — B(CyanlF2)) =
ewNElfLy+.r/N(CN.ﬁN+k) - eiaNE]ﬂHx/N(CN,BN) -0, N—>oo.
Thus, to prove Lemma 3.5, it suffices to show that

HmEmE, .. exp{-1e™"0,}) =

k—00 N—oo

1+,  ifB>a; (14)
(1+2e/2)", iff=a;
1, ifB<a,
where
0, := E(CNﬁN+k|7:k)- (15)

Write 6,(4,.x,N) := E,(exp{—de*6,}). Since 6, = By, (Cn).
we have

0y(A,x,N) = exp{—Ae" ™ E,(Cy )} (16)

Let v,,...,vy be all the children of the root o, and define
O.(v;) in the subtree rooted at v, as in (15), i.e.,
O,(v)) = B(Cy pnoi (V)| F1i1), Where Cy pyii(v;) is the number of
accessible vertices in the first BN + k generations of the sub-
tree rooted at v,. Then {(O,(v)),X,,),i =1,---,N} are i.i.d. ran-
dom vectors and have the same distribution as (0,,X,). By
noting that

N
Oni =1+ Z O0.WIX, > X,),

i=1
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we have
O (A, x, Ny =" (x + f] E‘,( exp{—1e™" @k})dy)N =
" 1 i N
(1 —L (1-6,(.y. N))dy) - (17)

For any x, 4 > 0, define

{ exp{—de™},
Qu(dx) =} expl-1e/2)

s

if B> a;
if B=a;
if B<a,

and
Qi (%) = exp{ = [7(1 - QA )dy), k>0.

We will show that for any k >0, x> 0 and 1> 0,
lim6,(A,1 - a+x/N,N) = Q(1,x). (18)
N—oco

It follows from Eq. (16) and Lemma 3.3 that Eq. (18) holds
true for k =0. Now suppose that (18) holds for k> 0. By a
change of variable in Eq. (17), we have

0. (4,1 —a+x/N,N) =

can 1 pon v (19)
—Ae
e (1- NI« (1-6,(0. 1= +y/N,N))dy) .
Since 1 —e™ < z holds for all z e R, by applying Lemma 3.2,
we have

0< 1-6,1-a+y/N,N)<
AEI—[H)‘/N(e?ﬁN@k) = E]—a-ﬂ-{\‘/N(eiﬂNcN,ﬁN-t-k) <
e eV Le.

Thus, by the dominated convergence theorem, we obtain

aN 00
tim [ (1 =6 1= +y/N.N)y = [ (1= QA 3)dy,
and then lim,_.. 6., (1,1 —a+x/N,N)= 0, (4,x) from Eq.
(19). By induction, we conclude Eq. (18) for all k > 0.

If B < a, it is clear that Q,(4,x) =1 for all >0 and x > 0.
If B> a, then, following the same arguments in the proof of
Theorem 1 in Ref. [9] or Proposition B.2 in Ref. [5], we have

(1+2e™)", if B> a;

lim Q(4, x) :{ (1+2e7/2)", if B=a.

Combining this with Eq.(18), we can prove Eq.(14). Thus
the proof of Lemma 3.5 is completed.

After these preliminaries, we are now ready to prove The-
orems 2.1 and 2.2.

Proof of Theorem 2.1. Here we only prove the case 8> «
since the others are similar. By noting that, for any € > 0,

Pl—(ru/N(e?nNCN‘ﬁN < Z) < Pl—(Hx/N(e?HNE(CN,ﬁN'?:k) <z+ 3)+

Py o€ E(Cupn|F2) = Cugnl > £).
(20)

By noting that the generating function of e™Z is
E(exp{—1eZ}) = (1 + Ae™)", it follows from Lemma 3.5 that

HmBEmP, . (e VE(CyulF7) <z+e) =

k—00 N—>oo

Ple"Z<z+¢), z=0.

Thus, by using (20) and Lemma 3.4, we obtain

limsup IP’,,W/N(e’”N Cupn < z) <P(e*Z<z+¢e).

N—oo

By the arbitrary of € > 0, we have

limsupP,.,. (e Cypn <2) <P(eZ <2).

N-oco

Similarly, we can obtain
PraeanCup /by < 2) > Proeon(B(CrlF) /by < 2= 8)-
P (€ BACumlF) = Cund > &),
and then

lminf P, ,.(e " Copm < 2) > P(eZ <2).

N—oo

Thus

limPl_l,,,x,N(e‘”NCN'ﬁN < z) =P(e~Z<2).
N—oo

The proof of Theorem 2.1 is completed.
Proof of Theorem 2.2. For any a,b € R, a similar argu-
ment as in the proof of Theorem 2.1 shows that under P,_,. v,

e’”N(aCN + bCN,aN“m) N (a+bdD(t)e*Z, N — co.

This implies (5) by the Cramér-Wold device.

Proof of Theorem 2.3. Note that for any freR,
Crovyvi < Cyavivan holds for sufficiently large N. By using
Theorem 2.2, we have that under P,_,. v,

eiaNCN,aN-bN VN L) 0. (2 1)

Similarly, for any t€R, Cy > Cyuniyvi = Cransver holds
for sufficiently large N. It follows from Theorem 2.2 that un-
der P,

e M(Cy, Chansby Vi) L> (e™Z,e2).
Then, under P, .,
& (Cy = Crvanony yw) — 0 (22)
Therefore, by applying (21), (22), Theorem 2.2 and Slutsky’s
theorem, we obtain that under P,_,, v,
CN.aNH;N VN T CN.rvabr\r VN —
Cy

e M(Cy - Cranspy vw) + ewNCN.athN N

- — 1.
e NCy

1

The proof of Theorem 2.3 is completed.

4 Proof of Theorem 2.4

In this proof, N > 2 is a fixed positive integer.
Let £, be the set of paths down T with length k. Define
T, to be the number of increasing paths in P, ;:

T, = Z I(P is increasing).

PPk

By Lemma 3.1, it is clear that
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E(T,,) = Z P(P is increasing) = E(T,, )= Nt — Nk N
"l T (N Dk, + D!
n—k Nn+l
Z Z Z P(oy:- 0 is increasing) = (N =D \2x(k, + D(k, + 1)+te-tatd -
0 ol exp{nlogN —k,logk, +o(n)}, n—oco.  (24)

i Nj Nk _ Nn+1 _Nk .
— (k+1)! (N-1)(k+D)!

Next, we estimate Var(T, ).

We say that two paths P and P’ are vertex-disjoint if
V(P)NV(P") =0, where V(P) and V(P’) are the vertex sets of
P and P, respectively. For
P =35 % €P,, with |x,| <%, if P and P are not vertex-
m<k

any P =Xxox, - x,

disjoint, then there exist integers /, m such that 0 <<

and x; = %_,,, iff m— [ <i<m.By Lemma 3.1, we have

(1 =x)*"2k—1-m)!
o 2k=D!(k—D(k— m)‘

P(P and P are increasing) =

2k —1-m)!
Qk—=1+DI(k—D!(k—m)!"

Note that I(P is increasing) and I(P is increasing) are in-
dependent if P and P are vertex-disjoint. Thus,
Var(Tn,k) =
Z (P(P and P are increasing) —P(P is increasing)z) <

P.PeP, i

Z P(P and P are increasing) <

P, PeP, . are not vertex-disjoint

2(N" b l)Nk Qk—1-m)IN“
Z;(Zk I+ DIWk=D'k—m)!

Z(N”” Nk) (L+m)IN'
ZZ G+ 1+ Dm!

2(N"” Nk) QI+ DHIN
Z (k+1+ DI+

where in the last equality we have used the equality

(P4 j)! +j+ 1)
L LRI LRI
il n!(j+ 1!

i=0

Since (k+[+1)! >

Q1+ 1IN 1 2+1 .
i (k+ 1+ DI+ D <WZ( )(N/k)

k'k"', we have

3N

€
. 2k+1 <
Nk'(1+N/k) Nl
Hence,
2N (N — N 2€3N
Var(T, )< = N ND 2 gy @3

N(N - 1)k!

For any sequence k, — co with k, = o(n), it follows from
(23) and Stirling’s formula that

For any &>0, we take k,=(1+é&)nlogN/logn and
k, = (1 —&)nlogN/logn. Then, by applying Eq. (24), we have
P(Ly, > (1+¢&)nlogN/logn) =P(T,,, > 1) <
E(T,.,) =0,

n— oo,

and furthermore, by Chebyshev’s inequality,

P(Ly, < (1 -¢&)nlogN/logn) =P(T,;, =0) <

Var(T,;,) )
(E(T,1,) ))
2e3N
NE(T,;,)

-0, n-—> oo,

Then, we obtain Theorem 2.4.
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