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Abstract: The random variable Z, is investigated, the maximal node degree in a random k-tree at
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0 Introduction

The random k-trees model, which was first
proposed in Ref. [17], is a randomized version of
the well-known k-trees in graph theory®, and
plays an important role in graph minor area®.
There are several equivalent definitions of k-trees,
and we employ only one of them, from which a
random k-tree can be generated in an iterative

manner. Let #=1 be a fixed integer. Starting with

a k-clique of nodes labeled by 0,, 0,, =, 0,

Received: 2019-10-29; Revised: 2020-01-12

successively the nodes with labels 1, 2, +-+, n are

born, where at each step the new node will be
attached to all of the nodes of an already existing
k-clique chosen uniformly at random. In
particular, for the case 2 =1 one can get the well
recursive

studied random tree model—random

trees' . Here, we should emphasize that for £ =>2,

the random k-trees are no more trees. For

instance, the special case £ =2 coincides with the
scale-free growing network model proposed in the

Ref. [6]9

where triangle is one of the most
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frequently appearing subgraphs (see Fig. 1 for an
illustration of this model with £ =2 at first several

steps).

<>

Fig. 1 An evolution of random 2-trees at step n=0,1 and 2

One of the most fundamental terminologies in
graph theory is the node degree. The degree of a
node v in the graph G is the number of edges that
are incident to v (i. e., the number of the
neighbours of v in G). The degree distribution in a
graph is defined to be the fraction of nodes with
degree £ =0. In other words, for any # =0, the
degree distribution shows the probability that the
degree of a node picked uniformly at random in the
graph is £. It has been shown in the literature that
the asymptotic degree distribution of random 1-
trees (i. e. , random recursive trees) is essentially
different from that of random k-trees with &£ =2,
as the tree size goes to infinity. The asymptotic
degree distribution for the case & = 1 is the
geometric distribution with parameter 1/2 (see
Ref. [7]. That is, the proportion of nodes with
degree d =1 is asymptotically equal to 1/2¢. While
for k=2, Ref. [1] proved that the proportion of
nodes with degree d =1 follows asymptotically a

1

power law d 7 with exponent y:2+kT1'

Another related topic on the node degrees is to
consider the maximal degree. The maximal degree
in random k-trees with £ =1 has been well studied

8107 Our main concern here is

by several authors
to study the asymptotic behavior of the maximal
degree in a random k-trees at step n for any k=2,
as n goes to infinity. For recent results on random
k-trees, we refer readers to Refs. [11-15].
Throughout this work, we fix integer & =>2.
To state our main result in the following, we need

some necessary notation. In the evolving process

of generating a random k-tree, we let 7, be the o-

algebra generated by the first n steps, and T, the
resulting graph after step n, for any integer n=>0.
We denote by [n] the node set of T, s i.e., [n]=
{015 03y *==s 045 1, 2,+++, n} with [0]=1{0,, 0,,
+, 0, }. For convenience, we say j =0 if j €[0].
In a random k-tree T,, let D; (n) denote the
degree of node j € [n ], and Z, the maximal
degree, i.e. ,
Z,=maxD; (n).

j€ln]
It is not hard to see that here the random

variable D, (n) is well defined for each n=0, since
the degrees of all nodes in [0] share a common
distribution by symmetry.

Theorem 0. 1

there exists a positive random variable Z such that

In a random k-tree T, with k=2,

Z,/n* V" converges to Z almost surely and in L?
for all p=1, as n—>co,

The rest of the paper is organized as follows.
Section 1 is devoted to proving Theorem 0. 1, by
constructing a sequence of suitable martingales and
applying the martingale convergence theorem. In
Section 2, we extend our main result to the

random k-Apollonian networks model.

1 Proof of Theorem 0. 1

To study the maximal degree in a random k-
tree, we shall use a martingale method developed
in Ref. [ 16-17 ].

degree in a generalized Barabasi-Albert random
[18]

He investigated the maximal

tree by constructing a wide class of martingales
Later, using similar arguments the results are also
extended to the preferential attachment graphs

19 Our method used here is an adaptation

model
of theirs.

To begin with, we now introduce some useful
notation as follows. For real numbers a,b > —1
with ¢ — 6 > — 1, the generalized binomial
coefficient can be written in terms of gamma

functions:

(d ) - I'a+1D

b/ T'b+DIla@—b+1’

where a, b are not necessarily integers. For any
node j € [n], we define an operator A; (n+1) =
D;(n+1)—D; (n), indicating the increment of
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the degree of node j from step n to n+1. For any
real d>—1 and j €[n ], we denote

1
. F(’”L?) (D,,.<n>+d—1)
g \n) = 1)
! 14+ (k —1d d
F<n+7k )
where
B,.<n>:Dj<7fz>—k(/:%12>

It is obvious to see that M;, (n) is well-

defined, since Bj (n)>>1 follows by the simple fact
the degree D; (n)= % holds for all j € [n].

At the initial step, there is only one k-clique
in the graph T,. When a node j =1 is born, it is
not hard to see that exactly £ new distinct k-
cliques are created, containing node j.

As a result, the number of k-cliques in any
random k-tree T, is exactly kn+1. If the degree of
node j increases by 1 at some step afterwards,
however, the number of k-cliques which contains
node ; only increases by & — 1. Then, for any
given node with degree D" = k, at any step there
are exactly

k+ (D" —k)(k—1)=(G;k—DD" —k(k—2)
Therefore,
conditioning on %, , we have that for any j €[n ],

ED,;(n+1 |7, ]=D;(n)+
(k—DD;(n) —kk—2)

distinct  k-cliques  containing it.

b

Based on the relation (1), the result on the
degree of any given node in a random k-tree T, is
given in the next proposition.

Let D; (n) be the degree of

node j in a random k-tree T,.

Proposition 1. 1
Then for any node
j» as n—>°°, there exists a nonnegative random
variable &, such that D; (n)/n“ """ converges to
&, almost surely and in L’ for any p = 1,

with moments

r(i+)r(r+5)

k—1
El¢]=
' o, 1+ Gk —Dr k
F(] ™ k >F</g —1>
T:1729"'. (2)
Proof In what follows, let node ; and real d >—1

be fixed. Recall that we set j =0 if j € [0]. By
considering the two cases A;(n) =0 or A;(n)=1,
and using the well-known recursion for gamma
functions, i.e. , I'(x)=(x — D I'(x —1) for any
x>>1, it is easy to check that for all d>—1,

(D,<n+1>+d1)
d
+dA_,-(n)

(D_,<n>+d1)<1
5]‘(71>

d
It follows by (1) that
(k—DD,(n)
ka1 a

),n>j (3)

P, ) =1]%)

kn 1 1—P @, n)=01|7%),
which implies that which, together with Eq. (3), implies that
G —=DD,(
E[Aj(n—Fl) ‘c/,,]fwv] 6[71]
@))
1
r 14— —
<"+ +k> D/n+1D+d—1, _
EM,,(n+1|7,]= TG _Dd E | 7, | =
R d

F(ﬂ+1+%)

1+(k—1)d)(

F<n+1+ 5

</e—1>d) (D,,.<n>+d—1)

kn +1 d
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r(n+ )
Tk (D,-<n>+d—1 Moo
1+ (k—d I
F(n +7+ f ) d

Then, for any node j =0 and d > —1, we
have that the sequence {M; , (n)},_; is a positive
martingale with respect to the filtration {7, },~;.
Therefore, by the

theorem'’, it follows that M, , (n) converges

martingale convergence

almost surely to some nonnegative random variable

with finite mean, as n—>°°. Additionally, one can

see that the moments E[D;“(n)] are finite for all

d > — 1, More

precisely, given the initial value

RCE—2)  k
kR—1 k—1

we have that for any d >—1,

as d 1is chosen arbitrarily.

D,(j)=D,() —

’

o I +w[‘ +i k
E{(D,(n)jdl” [ F(j+M) k>F<n+i)(/€1:;dl),n>j 1)
i

According to Stirling’s formula, it is easy to
see that

I'n+a)

nl

=n'A4+0m ")) (5

holds for any fixed real number a, as n — co,
Then, as n—>°o, by the fact that D; (n) converges

almost surely to the infinity, we have

(Dj(n)+d—1)

d
S +d —
(D ' ;d 1)<1+O(Dj1<n)>>:
d
raan o)) @

holds almost surely. Hence, it follows by Eq. (4)
that for any n= j ,

E [D;"(n)]=
F<j+%)r<d+kkj) TEA+0L)
n_F n s
F(j+1+(kk—1)d)[,(kfl>
d>—1 (D

Indeed, using a similar argument one can
show that M; , (n) also has [inite moments of all
orders greater than — 1. By the L’ martingale
convergence theorem'™', it thus follows that M; , (1)

converges to its limit also in L* for any p =1 as

well, as n—>co, Consider d =1 as a special case.
By Egs. (5) and (6), we have that there exists a

nonnegative random variable §; such that

D
M, () —lim 2 g (8

(k—1)/k ]
n

almost surely and in L* for any p=1. In addition,
we obtain that

E[&]=lmE[M,, ()]=E[M,, ()] =

F(j Jr%)F(rJrkkj)
SRS

and the proof of Proposition 1 is complete.

s I — a29"'9

r(j+

We remark that by using a connection to two-

LU obtained a weaker

color triangular Polya urns
result where their mode of convergence is in
distribution. Additionally, we can derive the exact
formula for any factorial moment of D; () for any
j €[n] according to Eq. (4). In particular, for any
0<{j <<n, the exact mean and variance of D; (n)

are given by

wtor(j+ )
Stz

E[Dj(n)jzkil 5 F<n+ )
a 3

and
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/eF(j—l—%>

2k — DI (n + 2::11) .

1
knl,I'\j + —
— |1+ ' <] k)

Var[D; (n)] =

(k=D (n +%) (b —Dr(j+ Zk —

221" one could

Applying Carleman’s condition
verify that the distribution of &, is uniquely
determined by its moments.

In the next lemma, we show that the limit
random variable &, given in Proposition 1 has no
atom at zero for any j =0.

Lemma 1.1 For any node j =0, we have that
P&>00=1.

Proof First, it follows by Egs. (5) and (7)
that D; (n)/n“"""* has finite moments of all d >
—1. As shown in Proposition 1. 1, for any fixed

( n )/7’1 (k=D /k

converges almost surely to &;, suggesting that D;

integer j = 0, we have that D,

(n)/n* " converges in distribution to &; as well.
Applying Markov’ s inequality, for any e >0, we
thus have

D;(n)

k—=1)/k

P (¢ < hmsupP (

n—>cx

<e)<

D
hm%upﬁ, E {( (k(17)12) }O(ﬁ).

n—>o

Letting € v 0 yields to that P (§, =0) =0 for
any integer j = 0. Finally, the nonnegativity of

random variable &, completes the proof of this

lemma.
We are now ready to give the proof of
Theorem 0.1 in the following.
Proof of Theorem 0. 1 For 0 <X j < n, we
first write
F(n + %) -
Z, (n)—maxM,Kn)— maxD; (n),
i€l nl ielj]
from which the simple linear relation between Z,
and Z,(n) is given by
1
F(n + z)

Z,(n) = ( ,,*M>.

E—1
M, (n)},.; is a
Thus,

maximum of (finite) martingales, the sequence

n!
Recall that each sequence {
being  the

nonnegative  martingale.

{Z,(n)},—, is a nonnegative submartingale.

k*l). J! (k—l)j!vp(”Jr%)

We next show that Z, (n) converges almost
surely and in L? to some nonnegative random
variable Z for any p=1, as n—>°°, Since x’ is a
convex function on (0, ©©) for any r=1, it is easy
to see that the sequence {M/}, (n)},~; is also a
submartingale, and that the sequence of the
corresponding means E [ M/, (n)] is increasing in
n. Hence, for any given j =0 and r=1, it follows
by Proposition 1. 1 and Eq. (8) that M5, (n)
converges to &) almost surely and in L? for any p
=1, and for all n=j,

E M, . GO]<E [&].

Noting that the random variables {&;, j €
[0]} are identically distributed, we pick the
random variable &, to represent this entire class.

Then, we have

E[Z,(m)]< D, E M, (n]<
i€n]
FE [5]+ D E (&) (9

(including n — o)
according to Eq. (2) provided that r >£%/(k —1).
Thus, the submartingale {Z, () },_, is bounded in

which is finite for all =

L’ for any p=1. We conclude that, again by the
martingale convergence theorem, Z, (n) converges
not only almost surely but also in L” to some
finite-mean random variable for any p>1.

To prove that random variable Z is positive,
we shall prove that

*lirpmax el (10

Note that 1t]15 sufficient to show that Z, (n)
converges to the right-hand side of Eq. (10) in L~
for some r>1.

Let r >%/(k — 1) be fixed. Analogously to
Eq. (9), we have that for 1< << n,
DVE M, ()]

i=j+1

E[Z ) —Z,(n))" 1<

(1D
Taking the limit as n—><°> on the both sides of

Eq. (11) gives that for any fixed integer j =1,
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E{@@nz

o —max{& i € D]}) } < Z E [&]

P
which can be arbitrarily small with j sufficiently
large, as shown in Eq. (9). Then, letting j —>o°
yields to that the desired result Eq. (10) holds. It
is now easy to see that the probability P (Z>0) =1
follows by Lemma 1. 1.

2 Random Apollonian networks

A structure closely related to k-trees is the k-
Apollonian network when £2=3. The k-Apollonian
network is the same as a k-tree in every aspect,
except that recruiting cliques are always
deactivated. That is, once a clique is chosen to
attach the new node at any step n=1, it will never
be chosen again since then. The construction of the
simplest case of Apollonian networks with £ =3
originates from the problem of Apollonian circle

[23J . The random 3-Apollonian networks

packing
model was proposed independently Refs. [ 24-25]
as a model for real-life networks such as the
network of internet cables or links, collaboration
networks or protein interaction networks. Later,
Zhang, et al®®! generalized this model by replacing
higher-dimensional curvilinear hyperspheres with
triangles (i. e. , 3-cliques) to obtain the so-called
For
advances on the random k-Apollonian networks

model, we refer to Refs. [21, 27-30].

random k-Apollonian networks. recent

It is clear that the methods applied to k-trees
would work for £-Apollonian networks and would
produce similar types of result. We summarize
these results here, without proof. For random k-

Apollonian networks we shall use notation, with

tildes. For instance. Z, denotes the maximal
degree in a k-Apollonian network at step n.
Let I, be the indicator of an event A. By an

argument similar to that for random k-trees, we
can construct a positive martingale {Mj,d (n)},-;

in order to study the limiting behavior of ’li- (n)
for any node j in a random k-Apollonian network,

where d>—1,

oo O me+d—w
s _F@+}+éizmd>d ’
and

Rk —3)+ 1 0
E—2 :

An analysis following the steps in the proof of

D,(w)=D,;(n) —

Proposition 1 gives that there exists a nonnegative
random variable & such that D, (n)/n® ?/¢" D

converges to &; almost surely and in L” for any

p=1, with moments

k— (kb — 1)Il;j:‘);7>
k—2
1+;3(/:_12)r> (/e — (kk:IZ)I;],<)}>
r=1,2,

r@+zéﬂr@+

E[&]=

r(j+

For any j €[ n ], we write

7. () Zmam;,l (n) =

i€ln]
F(n + ﬁ)

n!

~ k(k—3)+1;_
( " k—2 ) :
Following the proof of Theorem 1. then one
can obtain that the sequence {Z, (n)},_, is a
submartingale bounded in L’ for any p = 1.
Finally, by the martingale convergence theorem,
we arrive at the corresponding results for the
random k-Apollonian networks model: In a
random k-Apollonian network with # =3, there
exists a positive random variable 7 such that Z,/

n* TP/ converges to Z almost surely and in L?

for all p=1, as n—>co,

3 Conclusion

In this work, we show the maximal degree in
a random k-tree, as well as in an Apollonian
network, has an almost sure limit as the tree size
grows to infinity. Although this limit is shown to
the more basic

The

positivity of random variable indicates the non-

be a positive random variable,

information on its distribution is still absent.

normality. We put the derivation of the asymptotic

distribution of the maximal degree in random k-
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trees into our further work.
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