文章编号:0253-2778(2020)06-0852-08

Inverse degree and properties of graphs

CAI Gaixiang¹, MEI Peilin¹, YU Guidong^{1,2}

(1. School of Mathematics and Physics, Anging Normal University, Anging 246133, China;

2. Department of Public Education, Hefei Preschool Education College, Hefei 230013, China)

Abstract: Let G = (V(G), E(G)) be a simple graph of order n and size m. The inverse degree of

a graph G with no isolated vertices is defined by $ID(G) = \sum_{v_i \in V(G)} \frac{1}{d(v_i)}$, where $d(v_i)$ is the degree

of the vertex $v_i \in V(G)$. First, in terms of the inverse degree, sufficient conditions for a connected graph to be k-Hamiltonian, k-edge-Hamiltonian, k-path-coverable, Hamiltonconnected, k-connected, 2-edge-connected and β -deficient were obtained, respectively. Second, sufficient conditions for the independence number of a connected graph to be less than or equal to the integer k were given. Finally, a sufficient condition for a connected balanced bipartite graph to be Hamiltonian was given.

Key words: inverse degree; degree sequence; graph properties

CLC number: O157.5 Document code: A doi:10.3969/j.issn.0253-2778.2020.06.019

2010 Mathematics Subject Classification: Primary 05C07; Secondary 05C09

CAI Gaixiang, MEI Peilin, YU Guidong. Inverse degree and properties of graphs [J]. Journal of

University of Science and Technology of China, 2020,50(6):852-859.

蔡改香,梅培林,余桂东. 逆度和图的性质[J]. 中国科学技术大学学报,2020,50(6):852-859.

逆度和图的性质

蔡改香1,梅培林1,余桂东1,2

(1. 安庆师范大学数理学院,安徽安庆 246133;2. 合肥幼儿师范高等专科学校公共教学部,安徽合肥 230013)

摘要:设G = (V(G), E(G))是 n 个顶点 m 条边的简单图. 无孤立点的图 G 的逆度定义为 ID(G) =

 $\sum_{v_i \in V(G)} \frac{1}{d(v_i)}$, 其中, $d(v_i)$ 表示顶点 v_i 的度. 首先用逆度刻画了连通图分别是 k-哈密尔顿、k-边哈密尔顿、

k-路覆盖、哈密尔顿连通、k-连通、2-边连通和 β -亏损的充分条件,其次用逆度给出了连通图的独立数小于等 于整数 k 的充分条件. 最后用逆度给出了连通的平衡二部图是哈密尔顿图的一个充分条件.

关键词:逆度;度序列;图的性质

Introduction

Let G be a simple connected graph with vertex set $V(G) = \{v_1, v_2, \dots, v_n\}$ and edge set E(G). For any $v_i \in V(G)$, we denote $d_G(v_i)$ (or simply $d(v_i)$) by the degree of vertex v_i . Denote by K_n the complete graph on n vertices. For two vertexdisjoint graphs G and H, we use $G \vee H$ to denote the join of G and H; G+H to denote their union.

A Hamiltonian path of the graph G of order n is a path of order n contained in G, and a Hamiltonian cycle of the graph G of order n is a cycle of order n contained in G. The graph G is said to be Hamiltonian if it contains a Hamiltonian cycle, is said to be traceable if it contains a Hamiltonian path, and is said to be Hamiltonconnected if every two vertices of G are connected by a Hamiltonian path. A graph G is k-Hamiltonian if for all $|X| \leq k$, the subgraph induced by $V(G)\backslash X$ is Hamiltonian. A graph G is k-edge-Hamiltonian if any collection of vertexdisjoint paths with at most k edges altogether belong to a Hamiltonian cycle in G. Thus 0-Hamiltonian and 0-edge-Hamiltonian are the same

Received: 2020-03-31; **Revised:** 2020-06-10

Foundation item; Supported by the Natural Science Foundation of China (11871077), the NSF of Anhui Province (1808085MA04), the NSF of Department of Education of Anhui Province (KJ2017A362).

Biography: CAI Gaixiang, female, born in 1981, master/associate Prof. Research field: Graph theory. E-mail: caigaixiang@qq.com Corresponding author: YU Guidong, PhD/Prof. E-mail: guidongy@163.com

as Hamiltonian. More generally, a graph G is kpath-coverable if V(G) can be covered by k or fewer vertex-disjoint paths. In particular, 1-pathcoverable is the same as traceable. A connected graph G is said to be k-connected (or k-vertex connected) if it has more than k vertices and remains connected whenever fewer than k vertices are removed. Similarly, G is k-edge-connected if it has at least two vertices and remains connected whenever fewer than k edges are deleted. The deficiency of a graph G, denoted by def(G), is the number of vertices unmatched under a maximum matching in G. We call $G \beta$ -deficient if $def(G) \leq \beta$. Thus a β -deficient graph G of order n has a matching number $n-2\beta$. We use $\alpha(G)$ to denote the independence number of a graph G. An integer sequence $\pi = (d_1 \leqslant d_2 \leqslant \cdots \leqslant d_n)$ is called graphical if there exists a graph G having π as its vertex degree sequence; in that case, G is called a realization of π . If P is a graph property, such as Hamiltonian or k-connected, we call a graphical sequence π is forcibly P if every realization of π has property P.

Topological indices are numbers associated with molecular structures which serve for quantitative relationships between chemical structures and properties. Many of them are based on the distance^[1], the vertex degree^[2]. Relations between the distance based and degree based topological indices are given in Ref. [3].

The inverse degree of a graph G is also topological index based on the vertex degree of the graph. The inverse degree of a graph G with no isolated vertices is defined as

$$ID(G) = \sum_{v_i \in V(G)} \frac{1}{d(v_i)},$$

where d (v_i) is the degree of the vertex $v_i \in V(G)$.

The inverse degree (also known as the sum of reciprocals of degrees) appeared first through conjectures of the computer program Graffiti^[4]. Motivated by a Graffiti conjecture, Zhang et al[5] established upper and lower bounds on ID(T) + $\gamma(T)$ for any tree T, where γ is the number of independent edges. Hu et al. [6] determined the extremal graphs with respect to ID(G) among all connected graphs of order n and with m edges. Dankelmann et al^[7] determined a relation between ID(G) and edge-connectivity. In the same paper a bound is established on the diameter in terms of ID(G). Mukwembi^[8] further improved this bound. In addition, Li and Shi^[9] improved the bound for trees and unicyclic graphs. Chen and Fujita^[10] obtained a nice relation between the diameter and inverse degree of a graph, which settled a conjecture in Ref. [8]. Recently Xu et al. [11] determined upper and lower bounds on inverse degree in terms of chromatic number, clique number, independence number, matching number, edge-connectivity, and number of cut edges. Ref. [12] found some lower and upper bounds on ID(G) and characterized the extremal graphs. Moreover, in the same paper, the inverse degree was compared with other degree-based graph invariants. More recent papers on the inverse degree should refer to Refs. [13-14].

Our main goal in this paper is, by utilizing the inverse index and degree conditions, to derive some sufficient conditions for a variety of graph properties including Hamilton-connected, k-Hamiltonian, k-edge-Hamiltonian, k-path-coverable, k-connected, 2-edge-connected and β -deficient. These graph properties are the concerns of plenty of graph theorists.

1 Lemmas

In order to prove the main theorems in this paper, we need the following results as our lemmas.

Lemma 1. 1^[15] Let $\pi = (d_1 \leqslant d_2 \leqslant \cdots \leqslant d_n)$ be a graphical degree sequence and $0 \leqslant k \leqslant n-3$. If $d_i \leqslant i+k \Rightarrow d_{n-i-k} \geqslant n-i$, for $1 \leqslant i < \frac{1}{2}(n-k)$, then π is forcibly k-Hamiltonian.

Lemma 1. 2^[16] Let $\pi = (d_1 \leqslant d_2 \leqslant \cdots \leqslant d_n)$ be a graphical degree sequence and $0 \leqslant k \leqslant n-3$. If $d_{i-k} \leqslant i \Rightarrow d_{n-i} \geqslant n-i+k$, for $k+1 \leqslant i < \frac{1}{2}(n+k)$, then π is forcibly k-edge-Hamiltonian.

Lemma 1.3^[17] Let $\pi = (d_1 \leqslant d_2 \leqslant \cdots \leqslant d_n)$ be a graphical degree sequence and $k \geqslant 1$. If $d_{i+k} \leqslant i \Rightarrow d_{n-i} \geqslant n-i-k$, for $1 \leqslant i \leqslant \frac{1}{2}(n-k)$, then π is forcibly k-path-coverable.

Lemma 1.4^[18] Let G be a graph of order $n \ge 3$ with degree sequence (d_1, d_2, \dots, d_n) , where $d_1 \le d_2 \le \dots \le d_n$. If $2 \le k \le \frac{n}{2}$, $d_{k-1} \le k \Rightarrow d_{n-k} \ge n-k+1$. Then G is Hamilton-connected.

Lemma 1.5^[19] Let G be a graph of order $n \ge 4$ with degree sequence (d_1, d_2, \cdots, d_n) , where $d_1 \le d_2 \le \cdots \le d_n$. If $d_i \le i + k - 2 \Rightarrow d_{n-k+1} \ge n - i$, for $1 \le i \le \frac{1}{2}(n-k+1)$, then G is k-connected.

Lemma 1.6^[20] Let $\pi = (d_1 \leqslant d_2 \leqslant \cdots \leqslant d_n)$ be a graphical degree sequence. Suppose $n \geqslant k+1$, and $d_1 \geqslant k \geqslant 1$. If $d_{i-k+1} \leqslant i-1$ and $d_i \leqslant i+k-2$

 $\Rightarrow d_n \geqslant n-i+k-1$, for $1 \leqslant i \leqslant \lfloor \frac{n}{2} \rfloor$, then π is forcibly k-edge-connected. In particular, if $k \geqslant \lfloor \frac{n}{2} \rfloor$, then π is forcibly k-edge-connected.

Lemma 1.7^[21] Let $\pi = (d_1 \leqslant d_2 \leqslant \cdots \leqslant d_n)$ be a graphical degree sequence, and let $0 \leqslant \beta \leqslant n$ with $n = \beta \pmod{2}$. If $d_{i+1} \leqslant i - \beta \Rightarrow d_{n+\beta-i} \geqslant n-i-1$, for $1 \leqslant i \leqslant \frac{1}{2} (n+\beta-2)$, then π is forcibly β -deficient.

Lemma 1.8^[22] Let $\pi = (d_1 \leqslant d_2 \leqslant \cdots \leqslant d_n)$ be a graphical degree sequence and $k \geqslant 1$. If $d_{k+1} \geqslant n-k$, then π is forcibly $\alpha(G) \leqslant k$.

Lemma 1. 9^[23] Let G = (X, Y; E) be a bipartite graph such that $X = \{x_1, x_2, \dots, x_n\}$, $Y = \{y_1, y_2, \dots, y_n\}$, $n \ge 2$, and $d(x_1) \le d(x_2) \le \dots \le d(x_n)$, $d(y_1) \le d(y_2) \le \dots \le d(y_n)$. If $d(x_k) \le k < n \Rightarrow d(y_{n-k}) \ge n - k + 1$, then G is Hamiltonian.

2 Main results

The main results of this paper are as follows.

Firstly, we consider the k-Hamiltonian and k-edge-Hamiltonian properties. When k=0, the 0-Hamiltonian and 0-edge-Hamiltonian properties are both equivalent to the Hamiltonian property.

Theorem 2.1 Let G be a connected graph of order $n \ge 9$ and $0 \le k \le n-3$.

(i) For
$$k = 0$$
 or $k = 1$ or $n - 5 \le k \le n - 3$, if $ID(G) \le 1 - \frac{2k - 2}{n + k - 1} + \frac{n + k - 1}{2n - 2}$,

then G is k-Hamiltonian, unless

$$G \cong K^{\frac{n+k-1}{2}} \vee \frac{n-k+1}{2} K_1.$$

(ii) For $2 \le k \le n - 6$, if

$$ID(G) \leqslant 1 + \frac{1}{1+k} - \frac{k}{n-2} + \frac{1+k}{n-1},$$

then G is k-Hamiltonian, unless

$$G \cong (K_1 + K_{n-k-2}) \vee K_{k+1}$$
.

Proof Let G be a graph satisfying the conditions in the theorem. Suppose that G is not k-Hamiltonian. Then, by Lemma 1.1, there exists an

integer $1 \le i < \frac{1}{2}(n-k)$ such that $d_i \le i+k$ and $d_{n-k-i} \le n-i-1$. So we have

$$\begin{split} ID(G) &= \sum_{v_i \in V(G)} \frac{1}{d\left(v_i\right)} = \frac{1}{d_1} + \frac{1}{d_2} + \dots + \frac{1}{d_i} + \frac{1}{d_{i+1}} + \dots + \frac{1}{d_{n-k-i}} + \frac{1}{d_{n-k-i+1}} + \dots + \frac{1}{d_n} \geqslant \\ \frac{i}{d_i} + \frac{n-2i-k}{d_{n-k-i}} + \frac{i+k}{d_n} \geqslant \frac{i}{i+k} + \frac{n-2i-k}{n-i-1} + \frac{i+k}{n-1} = 2 - \frac{k}{i+k} - \frac{i+k-1}{n-i-1} + \frac{i+k}{n-1}. \end{split}$$
 Let $f(x) = -\frac{k}{x+k} - \frac{x+k-1}{n-x-1} + \frac{x+k}{n-1}, \ 1 \leqslant x \leqslant \frac{n-k-1}{2}, \ \text{then} \end{split}$
$$f'(x) = \frac{k}{(x+k)^2} - \frac{n+k-2}{(n-x-1)^2} + \frac{1}{n-1} = \\ \frac{k(n-1)(n-x-1)^2 - (n-1)(n+k-2)(x+k)^2 + (x+k)^2(n-x-1)^2}{(n-1)(x+k)^2(n-x-1)^2}. \end{split}$$

Let

$$g(x) = k(n-1)(n-x-1)^{2} - (n-1)(n+k-2)(x+k)^{2} + (x+k)^{2}(n-x-1)^{2}.$$

then

$$g'(x) = 4x^{3} + 6kx^{2} - 6nx^{2} + 6x^{2} + 2k^{2}x - 8knx + 8kx + 2nx - 2x - 4k^{2}n + 4k^{2} - 2kn^{2} + 6kn - 4k,$$

$$g''(x) = 12x^{2} - 12(n - k - 1)x + 2k^{2} - 8kn + 8k + 2n - 2.$$

For $1 \le x \le \frac{n-k-1}{2}$, $g''(x) \le g''(1) = 2k^2 - 8kn + 20k - 10n + 22$. And when $0 \le k \le n-3$, $g''(1) \le n \le k \le n-3$, $g''(1) \le n \le k \le n-3$.

 $-10n + 22 \le 0$. So $g''(x) \le 0$. Therefore,

$$g'(x) \leq g'(1) = -4k^{2}n + 6k^{2} - 2kn^{2} - 2kn + 10k - 4n + 8 = -2(2n-3)k^{2} - 2(n^{2}+n-5)k - 4(n-2) \leq 0.$$

So, for $1 \le x \le \frac{n-k-1}{2}$, $f(x) \ge \min\{f(1), f(\frac{n-k-1}{2})\}$. By calculation,

$$f(1) = -\frac{k}{1+k} - \frac{k}{n-2} + \frac{1+k}{n-1}, \ f(\frac{n-k-1}{2}) = -1 - \frac{2k-2}{n+k-1} + \frac{n+k-1}{2n-2}.$$

Let
$$f(1) - f(\frac{n-k-1}{2}) = \frac{-k^3n + 2k^2n^2 - 7k^2n + 2k^2 - kn^3 + 6kn^2 - 11kn + 4k + n^3 - 6n^2 + 11n - 6}{(1+k)(n-2)(n+k-1)(2n-2)} = \frac{-k^3n + 2k^2n^2 - 7k^2n + 2k^2 - kn^3 + 6kn^2 - 11kn + 4k + n^3 - 6n^2 + 11n - 6}{(1+k)(n-2)(n+k-1)(2n-2)} = \frac{-k^3n + 2k^2n^2 - 7k^2n + 2k^2 - kn^3 + 6kn^2 - 11kn + 4k + n^3 - 6n^2 + 11n - 6}{(1+k)(n-2)(n+k-1)(2n-2)} = \frac{-k^3n + 2k^2n^2 - 7k^2n + 2k^2 - kn^3 + 6kn^2 - 11kn + 4k + n^3 - 6n^2 + 11n - 6}{(1+k)(n-2)(n+k-1)(2n-2)} = \frac{-k^3n + 2k^2n^2 - 7k^2n + 2k^2 - kn^3 + 6kn^2 - 11kn + 4k + n^3 - 6n^2 + 11n - 6}{(1+k)(n-2)(n+k-1)(2n-2)} = \frac{-k^3n + 2k^2n^2 - 7k^2n + 2k^2 - kn^3 + 6kn^2 - 11kn + 4k + n^3 - 6n^2 + 11n - 6}{(1+k)(n-2)(n+k-1)(2n-2)} = \frac{-k^3n + 2k^2n^2 - kn^3 + 6kn^2 - 11kn + 4k + n^3 - 6n^2 + 11n - 6}{(1+k)(n-2)(n+k-1)(2n-2)} = \frac{-k^3n + 2k^2n^2 - kn^3 + 6kn^2 - 11kn + 4k + n^3 - 6n^2 + 11n - 6}{(1+k)(n-2)(n+k-1)(2n-2)} = \frac{-k^3n + 2k^2n^2 - kn^3 + 6kn^2 - 11kn + 4k + n^3 - 6n^2 + 11n - 6}{(1+k)(n-2)(n+k-1)(2n-2)} = \frac{-k^3n + 2k^2n^2 - kn^3 + 6kn^2 - 11kn + 4k + n^3 - 6n^2 + 11n - 6}{(1+k)(n-2)(n+k-1)(2n-2)} = \frac{-k^3n + 2k^2n^2 - kn^3 + 6kn^2 - 11kn + 4k + n^3 - 6n^2 + 11n - 6}{(1+k)(n-2)(n+k-1)(2n-2)} = \frac{-k^3n + 2k^2n^2 - kn^3 + 6kn^2 - 11kn + 4k + n^3 - 6n^2 + 11n - 6}{(1+k)(n-2)(n+k-1)(2n-2)} = \frac{-k^3n + 2k^2n^2 - kn^3 + 6kn^2 - 11kn + 4k + n^3 - 6n^2 + 11n - 6}{(1+k)(n-2)(n+k-1)(2n-2)} = \frac{-k^3n + 2k^2n^2 - kn^3 + 6kn^2 - 11kn + 4k + n^3 - 6n^2 + 11n - 6}{(1+k)(n-2)(n+k-1)(n+k$$

0, we get
$$k = n - 3$$
; or $k = \frac{\sqrt{n^4 - 12n^3 + 32n^2 - 24n + 4} - 4n + n^2 + 2}{2n} \in (n - 6, n - 5)$; or $k = \frac{-\sqrt{n^4 - 12n^3 + 32n^2 - 24n + 4} - 4n + n^2 + 2}{2n} \in (1, 2)$.

Case 1 k=0 or k=1 or $n-5 \le k \le n-3$. In this case,

$$f(x)\geqslant \min\{f(1),f(\frac{n-k-1}{2})\}=f(\frac{n-k-1}{2}).$$
 Therefore,

$$ID(G) \geqslant 1 - \frac{2k-2}{n+k-1} + \frac{n+k-1}{2n-2}.$$

If
$$ID(G) = 1 - \frac{2k-2}{n+k-1} + \frac{n+k-1}{2n-2}$$
, all

equalities above should be attained. Thus, we have $i=\frac{n-k-1}{2}$, $d_1=\cdots=d_{n-k-i}=i+k=\frac{n+k-1}{2}$, $d_{n-k-i+1}=\cdots=d_n=n-1$, so $G \subseteq K^{\frac{n+k-1}{2}} \vee \frac{n-k+1}{2} K_1$. It is easy to check that the graph

$$K_{\frac{n+k-1}{2}} \vee \frac{n-k+1}{2} K_1$$
 is not k-Hamiltonian.

Case 2
$$2 \le k \le n - 6$$
.

In this case, $f(x) \ge \min\{f(1), f(\frac{n-k-1}{2})\}$ = f(1). Therefore

$$ID(G) \geqslant 1 + \frac{1}{1+k} - \frac{k}{n-2} + \frac{1+k}{n-1}.$$

If
$$ID(G) = 1 + \frac{1}{1+k} - \frac{k}{n-2} + \frac{1+k}{n-1}$$
, all

equalities above should be attained. Thus, we have i=1, $d_1=1+k$, $d_2=\cdots=d_{n-k-1}=n-2$, $d_{n-k}=\cdots=d_n=n-1$, so $G \subseteq (K_1+K_{n-k-2}) \vee K_{k+1}$. It is easy to check that the graph $(K_1+K_{n-k-2}) \vee K_{k+1}$ is not k-Hamiltonian.

This completes the proof.

Theorem 2.2 Let G be a connected graph of order $n \ge 9$ and $0 \le k \le n-3$.

(|) For
$$k = 0$$
 or $k = 1$ or $n - 5 \le k \le n - 3$, if $ID(G) \le 1 - \frac{2k - 2}{n + k - 1} + \frac{n + k - 1}{2n - 2}$,

then G is k-edge-Hamiltonian, unless

$$G \cong K_{\frac{n+k-1}{2}} \vee \frac{n-k+1}{2} K_1.$$

(ii) For $2 \leq k \leq n-6$, if

$$ID(G) \leq 1 + \frac{1}{1+k} - \frac{k}{n-2} + \frac{1+k}{n-1},$$

then G is k-edge-Hamiltonian, unless

$$G \cong (K_1 + K_{n-k-2}) \vee K_{k+1}$$
.

Proof Let G be a graph satisfying the conditions in the theorem. Suppose that G is not k-edge-Hamiltonian. Then, by Lemma 1.2, there exists an integer $k+1 \leqslant i \leqslant \frac{1}{2}(n+k-1)$ such that $d_{i-k} \leqslant i$ and $d_{n-i} \leqslant n-i+k-1$. So we have

$$\begin{split} ID(G) &= \sum_{v_i \in V(G)} \frac{1}{d\left(v_i\right)} = \frac{1}{d_1} + \frac{1}{d_2} + \dots + \frac{1}{d_{i-k}} + \frac{1}{d_{i-k+1}} + \dots + \frac{1}{d_{n-i}} + \frac{1}{d_{n-i+1}} + \dots + \frac{1}{d_n} \geqslant \\ &\frac{i-k}{d_{i-k}} + \frac{n-2i+k}{d_{n-i}} + \frac{i}{d_n} \geqslant \frac{i-k}{i} + \frac{n-2i+k}{n-i+k-1} + \frac{i}{n-1} = 2 - \frac{k}{i} - \frac{i-1}{n-i+k-1} + \frac{i}{n-1}. \\ \text{Let } f(x) &= -\frac{k}{x} - \frac{x-1}{n-x+k-1} + \frac{x}{n-1}, \ k+1 \leqslant x \leqslant \frac{n+k-1}{2}, \ \text{then} \\ &f'(x) &= \frac{k\left(n-1\right)\left(n-x+k-1\right)^2 - \left(n-1\right)\left(n+k-2\right)x^2 + x^2\left(n-x+k-1\right)^2}{\left(n-1\right)x^2\left(n-x+k-1\right)^2}. \end{split}$$

Let $g(x) = k(n-1)(n-x+k-1)^2 - (n-1)(n+k-2)x^2 + x^2(n-x+k-1)^2$, then $g'(x) = 4x^3 - 6kx^2 - 6nx^2 + 6x^2 + 2k^2x + 4knx - 4kx + 2nx - 2x + 4kn - 2k^2n + 2k^2 - 2kn^2 - 2k$, $g''(x) = 12x^2 - 12kx - 12nx + 12x + 2k^2 + 4kn - 4k + 2n - 2$.

For $k+1 \le x \le \frac{n+k-1}{2}$, $g''(x) \le g''(k+1) = 2k^2 - 8kn + 20k - 10n + 22$. And when $0 \le k \le n-3$, $g''(k+1) \le -10n + 22 \le 0$.

So, for
$$k+1 \leqslant x \leqslant \frac{n+k-1}{2}$$
, $f(x) \geqslant \min\{f(k+1), f(\frac{n+k-1}{2})\}$. By calculation,

$$f(k+1) = -\frac{k}{1+k} - \frac{k}{n-2} + \frac{1+k}{n-1}, f(\frac{n+k-1}{2}) = -1 - \frac{2k-2}{n+k-1} + \frac{n+k-1}{2n-2}.$$

Let

$$f(k+1) - f(\frac{n+k-1}{2}) = \frac{-k^3n + 2k^2n^2 - 7k^2n + 2k^2 - kn^3 + 6kn^2 - 11kn + 4k + n^3 - 6n^2 + 11n - 6}{(1+k)(n-2)(n+k-1)(2n-2)} = 0,$$

we get
$$k=n-3$$
; or $k=\frac{\sqrt{n^4-12n^3+32n^2-24n+4}-4n+n^2+2}{2n}\in(n-6, n-5)$; or $k=\frac{-\sqrt{n^4-12n^3+32n^2-24n+4}-4n+n^2+2}{2n}\in(1,2)$.

Case 1 k=0 or k=1 or $n-5 \le k \le n-3$. In this case,

$$f(x) \geqslant$$

$$\min\{f(k+1), f(\frac{n+k-1}{2})\} = f(\frac{n+k-1}{2}).$$

Therefore $ID(G) \geqslant 1 - \frac{2k-2}{n+k-1} + \frac{n+k-1}{2n-2}$.

If
$$ID(G) = 1 - \frac{2k-2}{n+k-1} + \frac{n+k-1}{2n-2}$$
, all

equalities above should be attained. Thus, we have $i = \frac{n+k-1}{2}$, $d_1 = \cdots = d_{n-i} = i = \frac{n+k-1}{2}$, d_{n-i+1}

$$= \cdots = d_n = n - 1$$
, so $G \cong K_{\frac{n+k-1}{2}} \vee \frac{n-k+1}{2} K_1$. It

is easy to check that the graph $K^{\frac{n+k-1}{2}} \vee \frac{n-k+1}{2} K_1$ is not k-edge-Hamiltonian.

Case 2 $2 \le k \le n - 6$.

In this case,

$$f(x) \ge \min\{f(k+1), f(\frac{n-k-1}{2})\} = f(1).$$

Therefore $ID(G) \ge 1 + \frac{1}{1+k} - \frac{k}{n-2} + \frac{1+k}{n-1}$.

If
$$ID(G) = 1 + \frac{1}{1+k} - \frac{k}{n-2} + \frac{1+k}{n-1}$$
, all

equalities above should be attained. Thus, we have i=k+1, $d_1=1+k$, $d_2=\cdots=d_{n-k-1}=n-2$, $d_{n-k}=\cdots=d_n=n-1$, so $G \cong (K_1+K_{n-k-2}) \vee K_{k+1}$. It is easy to check that the graph $(K_1+K_{n-k-2}) \vee K_{k+1}$ is not k-edge-Hamiltonian.

This completes the proof.

Corollary 2.1 Let G be a connected graph of order $n \ge 3$. If

$$ID(G) \leqslant \frac{3}{2} + \frac{2}{n-1}$$

then G is Hamiltonian, unless

$$G \cong K_{\frac{n-1}{2}} \vee \frac{n+1}{2} K_1.$$

Our next task will be to consider k-path-coverable property.

Theorem 2.3 Let G be a connected graph of order $n \ge 3$ and $1 \le k \le n-3$. If

$$ID(G) \leqslant 1 + \frac{2k}{n-k-1} + \frac{2}{n-k-1} + \frac{n-k-1}{2(n-1)},$$

then G is k-path-coverable, unless

$$G \cong (\frac{n+k+1}{2})K_1 \vee K_{\frac{n-k-1}{2}}.$$

Proof Let G be a graph satisfying the conditions in the theorem. Suppose that G is not k-path-coverable. Then, by Lemma 1. 3, there

exists an integer $1 \le i \le \frac{1}{2}(n-k-1)$ such that $d_{i+k} \le i$ and $d_{n-i} \le n-i-k-1$. So we have

$$ID(G) = \sum_{v_i \in V(G)} \frac{1}{d(v_i)} = \frac{1}{d_1} + \frac{1}{d_2} + \dots + \frac{1}{d_{i+k}} + \frac{1}{d_{i+k+1}} + \dots + \frac{1}{d_n} > \frac{1}{d_{n-i}} + \frac{1}{d_{n-i+1}} + \dots + \frac{1}{d_n} > \frac{i+k}{d_{i+k}} + \frac{n-2i-k}{d_{n-i}} + \frac{i}{d_n} > \frac{i+k}{i} + \frac{n-2i-k}{n-i-k-1} + \frac{i}{n-1} = 2 + \frac{k}{i} - \frac{i-1}{n-i-k-1} + \frac{i}{n-1}.$$

$$\text{Let } f(x) = \frac{k}{x} - \frac{x-1}{n-x-k-1} + \frac{x}{n-1}, \ 1 \leqslant x \leqslant \\ \frac{n-k-1}{2}, \ \text{then } f'(x) = -\frac{k}{x^2} - \frac{n-k-2}{(n-x-k-1)^2} + \\ \frac{1}{n-1} < -\frac{n-k-2}{(n-x-k-1)^2} + \frac{1}{n-1} < -\frac{1}{n-k-2} + \\ \frac{1}{n-1} < 0.$$

Therefore, $f(x) \geqslant f(\frac{n-k-1}{2}) = -1 + \frac{2k}{n-k-1} + \frac{2}{n-k-1} + \frac{n-k-1}{2(n-1)}$. Thus, $ID(G) \geqslant 1 + \frac{2k}{n-k-1} + \frac{2}{n-k-1} + \frac{n-k-1}{2(n-1)}$. If $ID(G) = 1 + \frac{2k}{n-k-1} + \frac{2}{n-k-1} + \frac{n-k-1}{2(n-1)}$, all equalities above should be attained. Thus, we have $i = \frac{n-k-1}{2}$, $d_1 = \cdots = d_{i+k+1} = i$, $d_{i+k+2} = \cdots = d_n = n-1$, so $G \cong (\frac{n+k+1}{2})K_1 \vee K_{\frac{n-k-1}{2}}$. It is easy to check that the graph $(\frac{n+k+1}{2})K_1 \vee K_{\frac{n-k-1}{2}}$ is

This completes the proof.

not k-path-coverable.

Corollary 2.2 Let G be a connected graph of order $n \ge 4$. If

$$ID(G) \leqslant 1 + \frac{4}{n-2} + \frac{n-2}{2(n-1)},$$

then G is traceable, unless $G \cong (\frac{n+2}{2})K_1 \vee K_{\frac{n-2}{2}}$.

Theorem 2.4 Let G be a connected graph of order $n \ge 3$. If

$$ID(G) \leqslant 1 + \frac{n}{2(n-1)},$$

then G is Hamilton-connected, unless

$$G \cong \frac{n}{2} K_1 \vee K_{\frac{n}{2}}$$
.

Proof Let G be a graph satisfying the conditions in the theorem. Suppose that G is not Hamilton-connected. Then, by Lemma 1.4, there exists an integer $2 \leqslant k \leqslant \frac{n}{2}$ such that $d_{k-1} \leqslant k$ and $d_{n-k} \leqslant n-k$. So we have

$$ID(G) = \sum_{v_i \in V(G)} \frac{1}{d(v_i)} = \frac{1}{d_1} + \frac{1}{d_2} + \dots + \frac{1}{d_{n-k}} + \frac{1}{d_{n-k+1}} + \dots + \frac{1}{d_n} \geqslant \frac{k-1}{d_{k-1}} + \frac{n-2k+1}{d_{n-k}} + \frac{k}{d_n} \geqslant \frac{k-1}{k} + \frac{n-2k+1}{n-k} + \frac{k}{n-1} = 1 - \frac{1}{k} + \frac{n-2k+1}{n-k} + \frac{k}{n-1}.$$

Let

$$f(x) = -\frac{1}{x} + \frac{n-2x+1}{n-x} + \frac{x}{n-1},$$
$$2 \leqslant x \leqslant \frac{n}{2},$$

then $f'(x) = \frac{x^4 - 2nx^3 + (3n-2)x^2 - 2n(n-1)x + n^2(n-1)}{(n-1)x^2(n-x)^2}.$

Let
$$g(x) = x^4 - 2nx^3 + (3n - 2)x^2 - 2n(n - 1)x + n^2(n - 1),$$

$$2 \leqslant x \leqslant \frac{n}{2},$$

then

$$g'(x) = 4x^{3} - 6nx^{2} + 2(3n - 2)x - 2n(n - 1),$$

$$g''(x) = 2(6x^{2} - 6nx + 3n - 2).$$
So $g''(x) \le g''(2) = 2(-9n + 22) < 0$. Thus
$$g'(x) \le g'(2) = -2n^{2} - 10n + 24 < 0.$$

So, for
$$2 \le x \le \frac{n}{2}$$
, $f(x) \ge \min\{f(2), f(\frac{n}{2})\}$.

$$f(2) = \frac{1}{2} - \frac{1}{n-2} + \frac{2}{n-1}, \ f(\frac{n}{2}) = \frac{n}{2(n-1)} = \frac{n}{2(n-1)}$$

$$\frac{1}{2} + \frac{1}{2(n-1)}$$
. Since $n \ge 4$, $f(2) \ge f(\frac{n}{2})$, thus

$$f(x) \geqslant f(\frac{n}{2}) = \frac{n}{2(n-1)}.$$

Therefore $ID(G) \geqslant 1 + \frac{n}{2(n-1)}$.

If $ID(G) = 1 + \frac{n}{2(n-1)}$, all equalities above

should be attained. Thus, we have $k = \frac{n}{2}$, $d_1 = d_2 = \cdots = d_{k-1} = k$, $d_k = k$, $d_{k+1} = \cdots = d_n = n-1$,

so $G \cong \frac{n}{2} K_1 \vee K_{\frac{n}{2}}$. It is easy to check that the graph $\frac{n}{2} K_1 \vee K_{\frac{n}{2}}$ is not Hamilton-connected.

This completes the proof.

Theorem 2.5 Let G be a connected graph of order $n \ge k+1 \ge 2$.

(|) If
$$ID(G) \leqslant \frac{2n}{n-2}$$
, then G is 1-connected.
(||) If $k \geqslant 2$,

$$ID(G) \leqslant \frac{1}{k-1} + \frac{n-k}{n-2} + \frac{k-1}{n-1},$$

then G is k-connected, unless

$$G \cong (K_1 + K_{n-k}) \vee K_{k-1}$$
.

Proof Let G be a graph satisfying the conditions in the theorem. Suppose that G is not k-connected. Then, by Lemma 1.5, there exists an integer $1 \leqslant i \leqslant \frac{1}{2}(n-k+1)$ such that $d_i \leqslant i+k-2$ and $d_{n-k+1} \leqslant n-i-1$. Obviously, $1 \leqslant k \leqslant n-1$. So we have

$$ID(G) = \sum_{v_i \in V(G)} \frac{1}{d(v_i)} = \frac{1}{d_1} + \frac{1}{d_2} + \dots + \frac{1}{d_n} + \frac{1}{d_{i+1}} + \dots + \frac{1}{d_{n-k+1}} + \frac{1}{d_{n-k+2}} + \dots + \frac{1}{d_n} \geqslant \frac{i}{d_i} + \frac{n - k - i + 1}{d_{n-k+1}} + \frac{k - 1}{d_n} \geqslant \frac{i}{i + k - 2} + \frac{n - k - i + 1}{n - i - 1} + \frac{k - 1}{n - 1}.$$

$$\text{Let } f(x) = \frac{x}{x + k - 2} + \frac{n - k - x + 1}{n - x - 1}, \ 1 \leqslant x \leqslant \frac{1}{n - x}$$

 $\frac{n-k+1}{2}$, then

$$f'(x) = \frac{(k-2)(n+k-3)(n-k+1-2x)}{(x+k-2)^2(n-x-1)^2}.$$

(i) If
$$k = 1$$
, $1 \le x \le \frac{n}{2}$, so

$$f'(x) = -\frac{(n-2)(n-2x)}{(x-1)^2(n-x-1)^2} \leqslant 0.$$

Therefore, $f(x) \ge f(\frac{n}{2}) = \frac{2n}{n-2}$. Thus,

$$ID(G) \geqslant \frac{2n}{n-2}$$

If $ID(G) = \frac{2n}{n-2}$. So, all equalities above

should be attained. Thus, we have $i = \frac{n}{2}$, $d_1 =$

$$d_2 = \cdots = d_n = i - 1 = \frac{n}{2} - 1$$
. So G is $\frac{n}{2} - 1$ regular

graph. It is easy to check that the graph is 1-connected.

(ii) If
$$k \ge 2$$
, $f'(x) \ge 0$. Therefore, $f(x) \ge f(1) = \frac{1}{k-1} + \frac{n-k}{n-2}$. Thus,

$$ID(G) \geqslant \frac{1}{k-1} + \frac{n-k}{n-2} + \frac{k-1}{n-1}.$$

If $ID(G) = \frac{1}{k-1} + \frac{n-k}{n-2} + \frac{k-1}{n-1}.$ So, all

equalities above should be attained. Thus, we have i=1, $d_1=k-1$, $d_2=\cdots=d_{n-k+1}=n-2$, $d_{n-k+2}=\cdots=d_n=n-1$, so $G \subseteq (K_1+K_{n-k}) \vee K_{k-1}$. It is stated that the graph $(K_1+K_{n-k}) \vee K_{k-1}$ is not k-connected in Ref. [22].

This completes the proof.

Since every k-connected graph is also k-edge-connected, we have also obtained the following sufficient conditions for a graph to be k-edge-connected.

Theorem 2.6 Let G be a connected graph of order $n \ge k+1 \ge 2$.

(|) If $ID(G) \leqslant \frac{2n}{n-2}$, then G is 1-edge-connected.

(\parallel) If $k \ge 2$,

$$ID(G) \leqslant \frac{1}{k-1} + \frac{n-k}{n-2} + \frac{k-1}{n-1},$$

then G is k-edge-connected, unless

$$G \cong (K_1 + K_{n-k}) \vee K_{k-1}$$
.

Especially, when k=2, we can get a sufficient condition with a bigger upper bound for ID(G), for large n.

Theorem 2.7 Let G be a connected graph of order $n \ge 6$. If

$$ID(G) \leqslant 2 + \frac{2}{n},$$

then G is 2-edge-connected.

Proof Let G be a graph satisfying the conditions in the theorem. Suppose that G is not 2-edge-connected. Then, by Lemma 1.6, there

exists an integer $3=k+1 \leqslant i \leqslant \frac{n}{2}$ such that

$$d_{i-2+1} \leqslant i-1, \ d_i \leqslant i+2-2, \ d_n \leqslant n-i+2-2.$$
We have

$$\begin{split} ID(G) &= \sum_{v_i \in V(G)} \frac{1}{d\left(v_i\right)} = \frac{1}{d_1} + \frac{1}{d_2} + \dots + \\ \frac{1}{d_{i-2+1}} + \frac{1}{d_{i-2+2}} + \dots + \frac{1}{d_i} + \frac{1}{d_{i+1}} + \dots + \frac{1}{d_n} \geqslant \\ \frac{i-2+1}{d_{i-2+1}} + \frac{2-1}{d_i} + \frac{n-i}{d_n} \geqslant \\ \frac{i-2+1}{i-1} + \frac{2-1}{i+2-2} + \frac{n-i}{n-i+2-2} = \\ 2 + \frac{1}{i} \geqslant 2 + \frac{2}{n}. \end{split}$$

If $ID(G) = 2 + \frac{2}{n}$, all equalities above should be attained. Thus, we have i = k + 1 = 3, $d_1 = d_2 = 2$, $d_3 = 3$, $d_4 = \cdots = d_n = n - 3$. Feng et al. [24] show that if G has this degree sequence, then it must be k-edge-connected.

This completes the proof.

Theorem 2.8 Let G be a connected graph of order $n \ge 10$ and $0 \le \beta \le n$, $n = \beta \pmod{2}$. If

$$ID(G) \leqslant \frac{n+\beta+2}{n-\beta-2} + \frac{n-\beta-2}{2(n-1)},$$

then G is β -deficient, unless

$$G \cong (\frac{n+\beta+2}{2})K_1 \vee K_{\frac{n-\beta-2}{2}}.$$

Proof Let G be a graph satisfying the conditions in the theorem. Suppose that G is not β -deficient. Then, by Lemma 1.7, there exists an integer $1 \leqslant i \leqslant \frac{1}{2}(n+\beta-2)$ such that $d_{i+1} \leqslant i-\beta$

and
$$d_{n+\beta-i} \leq n-i-2$$
. So we have

$$\begin{split} ID(G) &= \sum_{v_i \in V(G)} \frac{1}{d(v_i)} = \frac{1}{d_1} + \frac{1}{d_2} + \dots + \\ \frac{1}{d_{i+1}} + \frac{1}{d_{i+2}} + \dots + \frac{1}{d_{n+\beta-i}} + \frac{1}{d_{n+\beta-i+1}} + \dots + \frac{1}{d_n} \geqslant \\ \frac{i+1}{d_{i+1}} + \frac{n+\beta-2i-1}{d_{n+\beta-i}} + \frac{i-\beta}{d_n} \geqslant \\ \frac{i+1}{i-\beta} + \frac{n+\beta-2i-1}{n-i-2} + \frac{i-\beta}{n-1}. \end{split}$$
 Let $f(x) = \frac{x+1}{x-\beta} + \frac{n+\beta-2x-1}{n-x-2} + \frac{x-\beta}{n-1}, 1 \leqslant$

$$x \leqslant \frac{n+\beta-2}{2}$$
, then

$$f'(x) = -\frac{\beta+1}{(x-\beta)^2} - \frac{n-\beta-3}{(n-x-2)^2} + \frac{1}{n-1} \le$$

$$-\frac{\beta+1}{(n-x-2)^2} - \frac{n-\beta-3}{(n-x-2)^2} + \frac{1}{n-1} =$$

$$-\frac{n-2}{(n-x-2)^2} + \frac{1}{n-1} \le$$

$$-\frac{n-2}{(n-3)^2} + \frac{1}{n-1} = -\frac{3n-7}{(n-1)(n-3)^2} < 0.$$

Therefore, $f(x) \ge f(\frac{1}{2}(n+\beta-2)) = \frac{n+\beta+2}{n-\beta-2} + \frac{n-\beta-2}{2(n-1)}$.

Thus,
$$ID(G) \geqslant \frac{n+\beta+2}{n-\beta-2} + \frac{n-\beta-2}{2(n-1)}$$
.

If $ID(G) = \frac{n+\beta+2}{n-\beta-2} + \frac{n-\beta-2}{2(n-1)}$, all equalities above should be attained. Thus, we have $i = \frac{n+\beta-2}{2}$. $d_1 = \cdots = d_{i+2} = i-\beta$, $d_{i+3} = \cdots = d_n = 0$

$$n-1$$
, so $G \cong (\frac{n+\beta+2}{2})K_1 \vee K_{\frac{n-\beta-2}{2}}$. It is easy to

check that the graph $(\frac{n+\beta+2}{2})K_1 \vee K_{\frac{n-\beta-2}{2}}$ is not β -deficient. This completes the proof.

Theorem 2.9 Let G be a connected graph of order n. If

$$ID(G) \leqslant \frac{k+1}{n-k-1} + \frac{n-k-1}{n-1},$$

then $\alpha(G) \leq k$, unless $G \cong (\overline{K_{k+1}}) \vee K_{n-k-1}$.

Proof Let G be a graph satisfying the conditions in the theorem. Suppose that $\alpha(G) > k$. Then, by Lemma 1. 8, $d_{k+1} \le n-k-1$. So we have

$$ID(G) = \sum_{v_i \in V(G)} \frac{1}{d(v_i)} = \frac{1}{d_1} + \frac{1}{d_2} + \dots + \frac{1}{d_{k+1}} + \frac{1}{d_{k+1}} + \dots + \frac{1}{d_n} \geqslant \frac{k+1}{d_{k+1}} + \frac{n-k-1}{d_n} \geqslant \frac{k+1}{n-k-1} + \frac{n-k-1}{n-1}.$$
 That is to said,

$$ID(G) \geqslant \frac{k+1}{n-k-1} + \frac{n-k-1}{n-1}.$$

Combining this fact with our assumption, we get $ID(G) = \frac{k+1}{n-k-1} + \frac{n-k-1}{n-1}$, all equalities above should be attained. Thus, we have $d_1 = d_2 = \cdots = d_{k+1} = n-k-1$, $d_{k+2} = \cdots = d_n = n-1$, so $G \cong (\overline{K_{k+1}}) \vee K_{n-k-1}$. It is easy to check that the graph $(\overline{K_{k+1}}) \vee K_{n-k-1}$ does not satisfy $\alpha(G) \leq k$.

This completes the proof.

We define B_n^k ($1 \le k \le n-1$) as the graph obtained from $K_{n,n}$ by deleting all edges in its one subgraph $K_{n-k,k}$.

Theorem 2. 10 Let G = (X, Y; E) be a bipartite graph such that $X = \{x_1, x_2, \dots, x_n\}, Y = \{y_1, y_2, \dots, y_n\}, n \ge 2, \text{ and } d(x_1) \le d(x_2) \le \dots \le d(x_n), d(y_1) \le d(y_2) \le \dots \le d(y_n).$ If $ID(G) \le 3$,

then G is Hamiltonian, unless $G \cong B_n^k$.

Proof Let G be a graph satisfying the conditions in the theorem. Suppose that G is not Hamiltonian. Then, by Lemma 1.9, there exists an integer k < n such that $d(x_k) \leq k$ and $d(y_{n-k}) \leq n-k$. Obviously, $k \geq 1$. So we have

$$ID(G) = \sum_{v_i \in V(G)} \frac{1}{d(v_i)} = \sum_{i=1}^k \frac{1}{d(x_i)} + \sum_{i=k+1}^n \frac{1}{d(x_i)} + \sum_{i=k+1}^n \frac{1}{d(x_i)} + \sum_{j=1}^n \frac{1}{d(y_j)} + \sum_{j=n-k+1}^n \frac{1}{d(y_j)} \geqslant \frac{k}{d(x_k)} + \frac{n-k}{d(y_{n-k})} + \frac{n}{n} \geqslant \frac{k}{k} + \frac{n-k}{n-k} + \frac{n}{n} = 3.$$

If ID(G)=3, all equalities above should be attained. Thus, we have $d(x_1)=d(x_2)=\cdots=d(x_k)=k$, $d(x_{k+1})=\cdots=d(x_n)=n$, $d(y_1)=d(y_2)=\cdots=d(y_{n-k})=n-k$, $d(y_{n-k+1})=\cdots=d(y_n)=n$, so $G \cong B_n^k$. It is easy to check that the graph B_n^k is not Hamiltonian.

This completes the proof.

References

[1] XU K, LIU M, DAS K C, et al. A survey on graphs extremal with respect to distance based topological indices[J]. MATCH Commun Math Comput Chem,

- 2014, 71: 461-508.
- [2] GUTMAN I. Degree-based topological indices [J]. Croat Chem Acta, 2013, 86: 351-361.
- [3] DAS K C, GUTMAN I, NADJAFIARANI M J. Relations between distance based and degree based topological indices [J]. Appl Math Comput, 2015, 270: 142-147.
- [4] FAJTLOWICZ S. On conjectures of Graffiti II[J]. Congr Numer, 1987, 60:189-197.
- [5] ZHANG Z, ZHANG J, LU X. The relation of matching with inverse degree of a graph[J]. Discrete Math, 2005, 301: 243-246.
- [6] HUY, LIX, XUT. Connected (n; m) graphs with minimum and maximum zeroth-order Randić index[J]. Discrete Appl Math, 2007, 155; 1044-1054.
- [7] DANKELMANN P, HELLWIG A, VOLKMANN L. Inverse degree and edge-connectivity [J]. Discrete Math, 2009, 309: 2943-2947.
- [8] MUKWEMBI S. On diameter and inverse degree of a graph[J]. Discrete Math, 2010, 310; 940-946.
- [9] LI X, SHI Y. On the diameter and inverse degree[J]. Ars Combin, 2011, 101; 481-487.
- [10] CHEN X, FUJITA S. On diameter and inverse degree of chemical graphs [J]. Appl Anal Discrete Math, 2013, 7: 83-93.
- [11] XU K, DAS K C. Some extremal graphs with respect to inverse degree[J]. Discrete Appl Math, 2016, 203: 171-183.
- [12] DAS K C, XU K, WANG J. On inverse degree and topological indices of graphs[J]. Filomat, 2016, 30: 2111-2120.
- [13] DAS K C, BALACHANDRAN S, GUTMAN I. Inverse degree, Randić index and harmonic index of graphs[J]. Appl Anal Discrete Math, 2017, 11(2): 304-313.
- [14] ELUMALAI S, HOSAMANI S M, MANSOUR T, et al. More on inverse degree and topological indices of graphs[J]. Filomat, 2018, 32(1): 165-178.
- [15] CHVÁTAL V. On Hamiltons ideals [J]. J Combin Theory Ser B, 1972, 12: 163-168.
- [16] KRONK H V. A note on k-path Hamiltonian graphs
 [J]. J Combin Theory, 1969, 7: 104-106.
- [17] BONDY J A , CHVÁTAL V. A method in graph theory[J]. Discrete Math, 1976, 15: 111-135.
- [18] YU G D, YE M L, CAI G X, et al. Signless Laplacian spectral conditions for Hamiltonicity of graphs [J]. Journal of Applied Mathematics, 2014, 2014; Article ID 282053.
- [19] BONDY J A. Properties of graphs with constraints on degrees [J]. Studia Sci Math Hungar, 1969, 4: 473-475.
- [20] BAUER D, HAKIMI S L, KAHL N, et al. Sufficient degree conditions for k-edge-connectedness of a graph [J]. Networks, 2009, 54: 95-98.
- [21] LAS VERGNAS M. Problèmes de couplages et problèmes Hamiltoniens en théorie des graphes [D]. Paris: Université Pierre-et-Marie-Curie, 1972.
- [22] BAUER D, BROERSMA H J, VAN DEN HEUVEL J, et al. Best monotone degree conditions for graph properties: A survey[J]. Graphs Combin, 2015, 31: 1-22.
- [23] BERGE C. Graphs and Hypergraphs [M]. Amsterdam: North-Holland, 1973.
- [24] FENG L, ZHANG P, LIU H, et al. Spectral conditions for some graphical properties [J]. Linear Algebra and Its Applications, 2017, 524: 182-198.