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Abstract: Let G=(V(G), E(G)) be a simple graph of order n and size m. The inverse degree of

a graph G with no isolated vertices is defined by ID (G) = 2 , where d (v;) is the degree

1
v, EV(G) d(v,)
of the vertex v; € V(G). First, in terms of the inverse degree, sufficient conditions for a
connected graph to be k-Hamiltonian, k-edge-Hamiltonian, k-path-coverable, Hamilton-
connected, k-connected, 2-edge-connected and f-deficient were obtained, respectively. Second,
sufficient conditions for the independence number of a connected graph to be less than or equal to

the integer & were given. Finally, a sufficient condition for a connected balanced bipartite graph

to be Hamiltonian was given.
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0 Introduction

Let G be a simple connected graph with vertex
set V(G)={v,, vy, ***,v,} and edge set E(G).
For any v; €V (G), we denote d (v;) (or simply
d(v;)) by the degree of vertex v;. Denote by K,
the complete graph on n vertices. For two vertex-
disjoint graphs G and H, we use GV H to denote
the join of G and H ; G+ H to denote their union.

A Hamiltonian path of the graph G of order n
is a path of order n contained in G, and a
Hamiltonian cycle of the graph G of order n is a
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cycle of order n contained in G. The graph G is
said to be Hamiltonian if it contains a Hamiltonian
cycle, is said to be traceable if it contains a
Hamiltonian path, and is said to be Hamilton-
connected if every two vertices of G are connected
by a Hamiltonian path. A graph G is k-
Hamiltonian if for all | X | <<k, the subgraph
induced by V(G)\X is Hamiltonian. A graph G is
k-edge-Hamiltonian if any collection of vertex-
disjoint paths with at most k& edges altogether
belong to a Hamiltonian cycle in G. Thus 0-
Hamiltonian and 0-edge-Hamiltonian are the same
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as Hamiltonian. More generally, a graph G is k-
path-coverable if V (G) can be covered by £ or
fewer vertex-disjoint paths. In particular, 1-path-
coverable is the same as traceable. A connected
graph G is said to be k-connected (or k-vertex
connected) if it has more than % vertices and
remains connected whenever fewer than & vertices
are removed. Similarly, G is k-edge-connected if it
has at least two vertices and remains connected
whenever fewer than £ edges are deleted. The
deficiency of a graph G, denoted by def(G), is the
number of vertices unmatched under a maximum
matching in G. We call G B-deficient if def(G)<.
Thus a p-deficient graph G of order n has a
matching number n —28. We use a(G) to denote
the independence number of a graph G. An integer
sequence 7= (d | <d,<<++<{d,) is called graphical
if there exists a graph G having = as its vertex
degree sequence; in that case, G is called a
realization of =. If P is a graph property, such as
Hamiltonian or k-connected, we call a graphical
sequence 7w is forcibly P if every realization of =«
has property P.

Topological indices are numbers associated
which

between

with molecular structures serve for

quantitative  relationships chemical

structures and properties. Many of them are based

[1] [2]

, the vertex degree Relations

between the distance based and degree based

on the distance

topological indices are given in Ref. [3].

The inverse degree of a graph G is also
topological index based on the vertex degree of the
graph. The inverse degree of a graph G with no
isolated vertices is defined™ as

IDWG) = D, !

v, EVG) d(v;) ’
where d (wv;) is the degree of the vertex
v, €EV(G).

The inverse degree (also known as the sum of
reciprocals of degrees) appeared first through
conjectures of the computer program Graffiti*,
Motivated by a Graffiti conjecture, Zhang et alt’’
established upper and lower bounds on ID (T) +
y(T) for any tree T, where 7 is the number of
Hu et al.'™ determined the
extremal graphs with respect to ID (G) among all
connected graphs of order n and with m edges.

independent edges.

Dankelmann et al™ determined a relation between
ID(G) and edge-connectivity. In the same paper a
bound is established on the diameter in terms of
ID(G). Mukwembi™ further improved this
bound. In addition, Li and Shi"? improved the
bound for trees and unicyclic graphs. Chen and

Fujita”'™ obtained a nice relation between the

diameter and inverse degree of a graph, which
settled a conjecture in Ref. [8]. Recently Xu et

[ determined upper and lower bounds on

al.
inverse degree in terms of chromatic number,
clique number, independence number, matching
number, edge-connectivity, and number of cut
edges. Ref. [12] found some lower and upper
bounds on ID (G) and characterized the extremal
graphs. Moreover, in the same paper, the inverse
degree was compared with other degree-based
graph invariants. More recent papers on the
inverse degree should refer to Refs. [13-14 ].

Our main goal in this paper is, by utilizing the
inverse index and degree conditions, to derive
some sufficient conditions for a variety of graph
Hamilton-connected, k-
k-path-
coverable, fk-connected, 2-edge-connected and -

properties  including

Hamiltonian, k-edge-Hamiltonian,
deficient. These graph properties are the concerns
of plenty of graph theorists.

1 Lemmas

In order to prove the main theorems in this
paper, we need the following results as our
lemmas.

Lemma 1. 1" Letr=(d, <d,<<--<d,) be
a graphical degree sequence and 0k <n — 3. If

1
d,<l+k 36{,,7,'7;‘271_1‘, for 1<l<?(n_k)a

then = is forcibly £-Hamiltonian.
Lemma 1.2 Let r=(d,<d,<<-*<<d,) be
a graphical degree sequence and 0k <<n — 3. If

1
di<i=>d, . =n—itk, for k+1<i<?(n +k),

then = is forcibly k-edge-Hamiltonian.
Lemma 1.3""  Let 7= (d, <d,<-<d,) be
a graphical degree sequence and k=1, If d,,,<<i=

1
d,.,.=n—i—Fk, for 1<i<?(n—k), then 7 is

forcibly k-path-coverable.
Lemma 1. 4"®)  Let G be a graph of order n=>
3 with degree sequence (d,, d;, ***»d,), where

d\<d,<-<d,. I 2<k<%, di <k =>d, =

n—£k+1. Then G is Hamilton-connected.
Lemma 1. 5" Let G be a graph of order n=>

4 with degree sequence (d,, d», ***, d,), where
di<d,<-<d,. Ud,<it+k—2=>d, ,..=n—

1
i, for 1<i<?(n —Fk+1), then G is k-connected.

Lemma 1. 6  Let r=(d,<d,<-+<d,) be
a graphical degree sequence. Suppose n =k + 1,
and d1>k>1. If d,fkflél.*l and d,<l+k —2
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=>d,=n—i+k—1, for 1<i<|_%J, then 7 is

forcibly k-edge-connected. In particular, if & =

L%J, then & is forcibly k-edge-connected.

Lemma 1. Let t=(d , <d,<*<d,) be
a graphical degree sequence, and let 0<X8<{n with
n=P(mod 2). U diy<<i—B=d,.,  =n—i—1,

7T2ﬂ

1
for 1<i<?(n +pB—2), then n is forcibly B-

deficient.

Lemma 1. 8% Letr=(d,<d,<-+<d,) be
a graphical degree sequence and k=1, If d,., =
n—Fk, then 7 is forcibly a (G)<k.

Lemma 1. 9"  Let G=(X, Y; E) be a
bipartite graph such that X ={x;, x,, **, 2, ),
Y={y1s yos s vt sn=2, and d (x,)<d (x,) <
o d (x,), d(y)<d(y,) < <d(y,). If
dx)<k<n=>d(y,,)=n—k+1, then G is
Hamiltonian.

2 Main results

The main results of this paper are as follows.

Firstly, we consider the .-Hamiltonian and £-
edge-Hamiltonian properties. When £ =0, the 0-
Hamiltonian and 0-edge-Hamiltonian properties
are both equivalent to the Hamiltonian property.

Theorem 2.1 Let G be a connected graph of
order n==9 and 0<Ch<Cn—3.

(i) Fork=0ork=1orn—5<k<<n—3, if

2k — 2 n+k—1
<1— ,
I R
then G is k-Hamiltonian, unless
—k 1
(}gKyy—él \/ %K]
(i) For 2<k<n—6, if
1 k 1++%
< — s
R

then G is k-Hamiltonian, unless
GL (K, +K, 2V K.
Proof ILet G be a graph satisfying the
conditions in the theorem. Suppose that G is not
k-Hamiltonian. Then, by Lemma 1. 1, there exists an

1
integer 1<8i << ?(77*k) such that d;<<i+k and d, , ;<<n—i—1. So we have

1 1 1

1 1
e

1 1

1
ID(G) = - .. >
v, g;u) d(v;) d, . d, . - d; di d i * d it - - d,
7 n—2i—k 1 +k 7 n—2i—k i+ k k i +kEk—1 i+k
— = —92 _
d,-+ d, - d, ~i+k n—i—1 Tt i+k n—i—1 n—1
k xt+hk—1 x+k n—k—1
S — <. .<t * -
Let f(x) Tk n—x—1+77—1 , IS < 5 , then
. k +k—2 1

£ = - -

(r+E)? (n—x—1)°

n—1

Fan—1Dn—a—D —n—Dn+Et—2D@+E+ @+ —x—1)°
n—D(ax+E)in—x—1)° ’

Let

g@)=kn—Dh—a—D* = —1Dh+kr—=2(+kr"+
(x+k)n—x—1D7%,

then

g/ (x) =4x° + 6kx? — 6nx® + 622 + 2k%x — 8knx + Skx + 2nx — 22 — 4k%n + 4k* — 2kn® + 6kn

*4kv

g (x) =122 —12(n —k — Dz + 2k> — 8kn + 8k + 2n — 2.

—k—1
For 1<1<%

—10n+22<C0. So g”(x)<<0. Therefore,

s g () <<g"(1)=2k* —8kn+20k —10n +22. And when 0<<k<<n —3,g"(1)<<

g () < g' (1) =—4k’n +6k> — 2kn> — 2kn + 10k — 4n + 8 =
—20@2n —3)k*—2n*+n—5k —4(n—2) < 0.

—k—1 —k—1
So, for lgxg%, f(x)=min{ f(1) ,f(%)}. By calculation,
. k k 1++% n—k—1 2k — 2 n+k—1
f= 1+ 4 R n+/e—1+ 2n — 2
. (1) — ‘(n—/e—1>7—/e3n+2/e2n2—713271+2/e2—13773+6/en2—11kn+4/e+n3—6n2+11n—67
et f S AT =D+ h—1) 2n—2) -
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n'—12n°4+32n* —24n+4 —4dn+ n*+2

0, we get k =n — 3; or k = o € (n—6, n—5); or k=
—/nt—12n*+32n* —24n+4 —dn+ n*+2
€ (1,2).
2n
Casel k=0ork=1orn—5<k<<n—3. equalities above should be attained. Thus, we have
In this case, i=1, d1—1+k dy==d, , 1 =n—2,d, ,=
—k—1 o n—k—1 "‘:d,, —1, so (Ig(K +K”7}(72)VK;(71. It
S(x) = min{ /(1) f( 2 =« 2 ). is easy to check that the graph (K, +K,_,—,) V
Therefore, K, is not k-Hamiltonian.
2k — 2 n+k—1 This completes the proof.
IDG) =1— n-+k—1 o —2 Theorem 2,2 Let G be a connected graph of
2h—9 ntk—1 order n2=9 and 0<{k<<n —3.
I IDG) =1— ——— + = —— all (i) For k=0 or k=1 or n—5<k<n—3, if
equalities above should be attained. Thus, we have IDG) <1— 2k —2 + ntk—1 ,
o on—k—1 . n+k—1 ntk—1 2n—2
L= 2 sdi=cr=d, =ith= 2 ’ then G is k-edge-Hamiltonian, unless
dypoisg = =d, =n =1, so GRKuL Y G%K”’iﬂ\/wlﬂ.
n—k+1 . B i 2
TKI. It is easy to check that the graph (i) For 2<k<n—6, if
, k 1++%
—k+1 ;
K$ V%K] is not A-Hamiltonian. IDG) < 1+1—|—ﬁ n—2 n—1"
Case 2 2<h<n—6 then G is k-edge-Hamiltonian, unless
n—k—1 GXL (K, +K, ) V K.
In this case, f(x)=min{f (1), f(i)} Proof let G be a graph satisfying the
— £(1). Therefore conditions in the theorem. Suppose that G is not
’ 1 » 142 k-edge-Hamiltonian. Then, by Lemma 1.2, there
ID(G) =1+ — + .
n— n— exists an integer —(n —1) suc a
1++4 2 1 t t EHI<G<C ( +E—1) h that
1 k 1+4
If ID(G):1+1+}’ — 2+ 1 all d; < and d, ign—erk—l. So we have
R on— n—
1 1 1 1 1 1
ID(G) = —*Jr + -+ + + e+ + + e+ =
v, ;(}) d('U,) dl d,’f/\, dl‘f,t‘,fl d,,fi du*i+l d,,
i—k n—2i+k i i —k n—2i+k i k i —1 i
> —o " .
di d, . +d,,/ i hi k1 a1 PRy S L —
k x—1 x nt+k—1
et fla)=— 2 R 1<
Let f(x2) . n*erk*l_‘_n*l 1<z 2 then
e Fan—1Dn—x+k—1D"——Dn+k—22"+2"(n—2x Jr/e*l)z
) =

n—Dx"n—x+k—1)°
Letg(a)=Fkn—Dn—at+bk—1D)"'—G—Dh+k—2Dx*+2*(n—x+k—17%, then

g/ () =4x° — 6kx? — 6na? + 62 + 2k%x + dknzx — dkx + 2nx — 22 + dkn — 2k n + 2k% — 2kn® — 2k,

g’ () =12x% — 12kx — 12nx + 122 + 2k% + 4kn — 4k + 2n — 2.

For k+1<x<n+/§7_17 g () <g"(k+1)=2k>—8kn+20k —10n+22. And when 0<Ck<<n —3,
g"(k+1)<<—10n+22<0.

So, for k+1<x<¥, f () =min{ f (k +1),f(#)}. By calculation,

Let
f(k+1)_f(n+/e—1): —k3n+2/e2nz—7k2n+2/€2—/e773+6kn2—11kn+4/e+n3—6n2+11n—6:O,

2 A4+ n—20n+:—D0Cn—2)
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nt—12n°4+32n* —24n+4 —4n+ n*+

2
€En—6, n—5); or

we get k=n—3; or k=

—/nt —12n* + 320 —24n +4 —4dn +n®* +2

2n
k= 2n
Casel k=0ork=1orn—5<k<<n—3.
In this case,
f(x) =
k—1 kR—1
min{ f (& +1>,f‘<%>} =f(%).
2k—2  ntk—1
~1_
Therefore ID(G) =1 T h—1 P———
2k —2 n+k—1
If IDG) =1 — o — + P — all
equalities above should be attained. Thus, we have
 ntk—1 P . ntk—1 4
1= 2 s — —d,—i — 1= 2 ’ n—i+1
—k+1
=e=d,=n 1, 50 GRK o VKL T
—k+1
is easy to check that the graph K=tt-1'V HTKI is
not k-edge-Hamiltonian.
Case 2 2<<k<<n—6.
In this case,
. n—=kFk—1
f(x) Emm{f(/eJrl),f(f)}:f(l).
1 k 1++4
~ > .
Therefore ID(G)/1+1+}€ o R—
1 k 1+4
If IDG) =1+ + all

1+£ n—2 n—1’
equalities above should be attained. Thus, we have
i=k+1,d =1+k,dy,==d, . 1=n—2, d,,
=ee=d, =n—1, so GL(K,+K, , ) VEK,.
It is easy to check that the graph (K, +K, , )V
K., is not k-edge-Hamiltonian.

This completes the proof.

Corollary 2.1 Let G be a connected graph of
order n=3. If

DG < 2 2
2 n—1

then G is Hamiltonian, unless

1
GgK;vnJr

K.

Our next task will be to consider k-path-
coverable property.
Theorem 2.3 lLet G be a connected graph of
order n==3 and 1<Chk<<n—3. If

2k 2 n—k—1
N ’
ID(G) < 1+71*k*1+71*/e*1Jr 2(n — 1)
then G is k-path-coverable, unless
k+1
Ggyﬁi7i4K1Van
Proof LLet G be a graph satisfying the

conditions in the theorem. Suppose that G is not
k-path-coverable. Then, by Lemma 1. 3, there

€ (1,2).

1
exists an integer 1<i<?(n —k — 1) such that
d;<iandd, <n—i—k—1. So we have

1
ID(G) = =
v, GZV;G) d(v;)
i+i+ + ! + ! + e+
dl dg di+k d(*/«"*’l
1 1 1
d711+du ,71+ _'_d”/
1+ k n—2 —Fk 1
>
de+ d, . +d”/
1+ k n—2—Fk 1
R g
k 1 — 1 i
2+77n*i*k*1+n*1'
k x—1 x
Let f(x)=—— + s 1o <
x n—x—k—1 n—1
n—k—1 , - k n—k—2
f’thenf(l)i 't (71*1*13*1)2+
1 n—k—2 1 1
n*1<7(n*x*/€*1)2+n*1<7n*/€*2+
! <0
n—1 '
—k—1
Therefore. f (2) = f ("——) = — 1+
2k 2 n—k—1
n—k—1 a—k—1 2i—1) Lhus:
2k 2 n—k—1
;) =
ID(G>/1+n—k—1+n—/e—l+2(71—1)'
o 2k 2 n—k—1
HID(G)71+n—k—1+n—k—1+2(7z—1)’ all

equalities above should be attained. Thus., we have
o on—k—1

2 2 sdi = =d; 1=l d; 4= =d,
+k+1
=n—1, so GQ(HT)KI VK”*gfl. It is easy
+kE+1
to check that the graph (HT)KI V Kzt tis

not k-path-coverable.

This completes the proof.

Corollary 2.2 lLet G be a connected graph of
order n=4, If

4 n—2
< s
ID(G)\lJrn*Z 2(n —1)
n+2

then G is traceable, unless G&(

;K VK.

Theorem 2.4 Let G be a connected graph of
order n=3. If
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ID(G) < —0—72(”_1)

then G is Hamilton-connected, unless
G2 K VK:.

Proof lLet G be a graph satisfying the
conditions in the theorem. Suppose that G is not
Hamilton-connected. Then, by Lemma 1. 4, there

exists an integer 2<Ck <% such that d,_, <<k and

d, ,<n—*k. So we have
1

ID(G) = er + -+
LGZV;G)d(v) d,
1 1
 CE T P R
dﬁ 1 d!‘ du k du k41 d/z -
Ek—1 n—2k+1 k
=
dk*l _'_ du*k +d11 -
EF—1 n—2k+1 k
k + n—=~k +n—17
1 n—2k+1 k
17?—’— n—=Fk +n—1'
Let
1 —2x+1 .
flary——tqpnziedl, 2
x n—ux n—1
n
then
f(x)=

2t —=2n2 4+ GBn—2Dx* —2nn — Dax+n*(n —1)
n—Dzx"(n —2)?

Let
g@) =" —2n2* +Gn—2Dax* —2nin —Da +n*(n—1),

then
g (2) =42 —6nz? +2Bn —2Dx —2nn — 1),
g"(x) =2(6x> — 6nx +3n — 2).
So g’ (2)<<g"(2)=2(—9n+22)<C0. Thus

g/(x)<g/(2):*2n2*10n+24 <0.
So, [or2<1\ » f(@)=min{f(2), f( )}

<2>—i——1 +- 2 <—>f7" —
S = T TS T

1 1 N
2+2(n*1)' Since n =4, f(Z)/f(Z)» thus

n n
= - Y=
f(x)/f(z) T—1)

n
~ > -
Therefore ID(G)/I_'_Z(n*l)'

If ID(G)=1+ ﬁ , all equalities above

should be attained. Thus, we have & = %, d, =

d2:"':d&,1:}€, dk:kv d;\,+1:"':d,,:7’1719

so GL 7; K, V Kz. It is easy to check that the

graph K V K2 is not Hamilton-connected.

Thls completes the proof.
Theorem 2,5 Let G be a connected graph of
order n=k+1=>2.
) 2
CiHu ID(G)Q%, then G is 1-connected.
n—
Cii) Iif k=2,
1 n—*k k—1
< ,
ID(G)\kflJanZJFn—l
then G is k-connected, unless
GL (K, +K,,) V Kii.
Proof lLet G be a graph satisfying the

conditions in the theorem. Suppose that G is not
k-connected. Then, by Lemma 1.5, there exists

1
an integer 1<z’<?(n*/e +1) such that d,<<i +

F—2and d, ,. . <<n—1— 1. Obviously, 1<k <<
n—1. So we have

1 1 1
ID(G) = =—+ —F -+
U,Q(nd(vi) d, d,
1+ ! + e £ ! + ! + e+ ! =
di di+1 dil*k"’l d7l*/&+2 du -
1 n—k—i+1 k—1
— =
d,jL d, i1 + d,
i n—k—i+1  k—1
i +k—2 n—i—1 n—1"
x n—k—ax+1
— <<
Let f(x) Py — p—— I<Sxr<<
—k+1
ni, then
2
f,(1‘>:(k*2)(71+k*3)(n*/€+1*21).

(x+k—2)2(n—x—1)°
i) e=1, 1=2<". so

2
, (n—2)(n—2x)
) =— < 0.
£ (z—D*n—x—1)°*
2
Therefores f (2) = f (=)= - Thus,
2 n—2
= 72.
2n .
If ID (G) = So, all equalities above

should be attained. Thus, we have i = %, d, =

d2=°'°=d,,=i*1=%*1. So G is %*1 regular
graph. It is easy to check that the graph is 1-
connected.

Cii) I k=2, f'(x)=0. Therefore, f(x)=
) 1 n—=~k
f (1)7/€T1+n—2'

Thus ’
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1 n—bk k-1
>
IDG) = D
1 —k k—1
If ID (G) = +Z So, all

E—1 n—2 n—1"
equalities above should be attained. Thus, we have
i=1,d =k—1,dy,==d, ,+1=n—2, d, 1+>
=we=d,=n—1, soGL(K,+K, ,)VK, . It
is stated that the graph (K, +K,-,)V K, is not
k-connected in Ref. [22]].

This completes the proof.

Since every k-connected graph is also k-edge-
connected, we have also obtained the following
sufficient conditions for a graph to be k-edge-
connected.

Theorem 2. 6
order n=k +1=2.

Ci) I ID(G) <

Let G be a connected graph of

2n .
<. ——, then G is l-edge-
n—=2

connected.
i) k=2,
DG = Ly k
Thk—1 n—2
then G is k-edge-connected, unless
GXL (K, +K,») V K,,.

Especially, when £ =2, we can get a sufficient
condition with a bigger upper bound for ID (G),
for large n.

Theorem 2.7
order n=6. If

E—1
n—1"

Let G be a connected graph of

2
ID(G) <2+ —,
n

then G is 2-edge-connected.

Proof Let G be a graph satisfying the
conditions in the theorem. Suppose that G is not 2-
edge-connected. Then, by Lemma 1. 6, there

n
exists an integer 3=k +1<i<? such that

dio <<i—1,d,; i +2—2,d, <n—i+2—2.
We have
1 1
ID(G) = + Jr -+
IGZV;G)CZ("U-) d
1
ot 4— et
di72+1 d( 242 d1+1 du
i —2+1 2*1 n—1
di72+l d( d” -
i*Z—Q—lJr 2—1 n—1i -
i—1 i+2—2 n—i+2—2

1 2
24+ —==2+—.
i n

2
If ID(G):ZvL;

be attained. Thus, we have i =k +1=3, d,=d,
=2,d,=3,d,=+=d,=n—23. Feng et al.[*"
show that if G has this degree sequence, then it

, all equalities above should

must be k-edge-connected.

This completes the proof.
Theorem 2.8 Let G be a connected graph of
order n=>10 and 0<{f<<n, n=F(mod 2). If
n+B8+2 n—p—2
ID(G) < ,
(@) < 71—‘8—2Jr 2(n — 1)
then G is -deficient, unless
2
%)K V Ko
Let G be a graph satislying the

G <X (

Proof
conditions in the theorem. Suppose that G is not 8-

deficient. Then, by Lemma 1. 7, there exists an
integer 17 *(H—FB*Z) such that ;. <<i —f
and d,.5-;<n—i—2. So we have
1
ID(G) = :7+ + -+
v(§<;> d(v;) d,
1 1 1 1
+ + et +
di\l d{{Z dn\,‘?*i dn-ﬂ*z'-l
i+l n+p—2i—1 i—p8
+ .
d i d g d, ~
itl ntpo2io1 i
i —p n—i—2 n—1"

xt1 7 —2x—1 x—
Let f(oy=tbynipmoel 7B
x—p n—x—2 n—I1
—2
x<n+‘§ , then
, B+l n—p—3 1
S = T e 2 a1
 B+t1 a—p-—3 1
n—ax—2? —x—2)> n—1
n—=2 1
— <
(n—x—2)2+n*1
n—2 1 3n—7
=— < 0.

(n— 1) (n —3)°
1
=[5 tp—2)=

=37 "n—1
Therefore, f (x)

n+ﬂ+2+71—ﬁ—2
n—Bp—2 2n—1°
nt+p+2 n—p—2
S >
Thus, ID(G)/n*B*2+2(n*l)'
ntB+2 n—p—2 o
If 1D(G>_n*ﬁ*2+2(7’1*1) , all equalities
above should be attained. Thus, we have i =
n+p—2
e di==d, ,=i—fed, ., = =d, =
n+p+2

n—1, so GE¥(

YK, V Kr=i=2, Tt is easy to

n+p+2
2
B-deficient. This completes the proof.
Theorem 2.9 Let G be a connected graph of
order n. If

2

check that the graph ( YK, V Kié-2 is not

k41 n—k—1
< ,
ID(G)\n—/e—l+ n—1
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then a (G)<<k, unless GLL(K, 1 )VK,_,_,.

Proof Let G be a graph satisfying the
conditions in the theorem. Suppose that a« (G) >
k. Then, by Lemma 1.8, d, 1 <<n— %k —1. So
we have

1 1 1
ID(G) = — =ttt
Ul;(;)d(‘v') dl dz
1
+ +eet——=
dyi dk , d” -
kE+1 n*k*1> kR+1 n—k—1
d i d, T n—k—1 n—1 °
That is to said,
k+1 n—k—1
7)) =
ID(G>/n—/e—1 n—1 °

Combining this fact with our assumption, we
kE+1 n—k—1
—k—1 n—I1

above should be attained. Thus, we have d, =
dy=<=d,1=n—k—1,dy,=+=d,
so G2(K, 1) VK, , . Itis easy to check that the

graph (K,.,) VK, , | does not satisfy a (G)<<k.

This completes the proof.

We define B: (1<<k<<n — 1) as the graph
obtained from K, by deleting all edges in its one
subgraph K,_, .

Theorem 2. 10 Let G=(X, Y; E) be a
bipartite graph such that X={x,, x,, =, 2,}, Y
={y1s yos s yuts n=2, and d (2 <d (1,)<<
<d(x,), dyD<d(y,)<<<d(y,). If

ID(G) < 3,
then G is Hamiltonian, unless GLB*.

Proof Let G be a graph satisfying the
conditions in the theorem. Suppose that G is not
Hamiltonian. Then, by Lemma 1.9, there exists
an integer < n such that d (x,)<k and d (y,-,)

get ID (G) =
n

, all equalities

=n—1,

<n—F. Obviously, F=1. So we have
k
ID(G) = = —|—
§()d< 20 ,Elw
n—k
+
Z—; d(yf j ;+1d(
k n—=k n k n
=3.
n

d(x,)  d(y,.) T n = k
If ID (G) =3, all equalities above should be
attained. Thus, we have d (x,) =d (x,) =+ =
dx,)=k, d(xp ) ="=d(x,)=n,d(y, )=
d(y))=+=d(y,-.)=n—ks d(y,_p11) ==
d(y,)=n, so GLB!, Tt is easy to check that the
graph B* is not Hamiltonian.
This completes the proof.
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